def experiment(exp, arch, loss, double_softmax, confidence_thresh, rampup, teacher_alpha, fix_ema, unsup_weight, cls_bal_scale, cls_bal_scale_range, cls_balance, cls_balance_loss, combine_batches, learning_rate, standardise_samples, src_affine_std, src_xlat_range, src_hflip, src_intens_flip, src_intens_scale_range, src_intens_offset_range, src_gaussian_noise_std, tgt_affine_std, tgt_xlat_range, tgt_hflip, tgt_intens_flip, tgt_intens_scale_range, tgt_intens_offset_range, tgt_gaussian_noise_std, num_epochs, batch_size, epoch_size, seed, log_file, model_file, device): settings = locals().copy() import os import sys import pickle import cmdline_helpers if log_file == '': log_file = 'output_aug_log_{}.txt'.format(exp) elif log_file == 'none': log_file = None if log_file is not None: if os.path.exists(log_file): print('Output log file {} already exists'.format(log_file)) return use_rampup = rampup > 0 src_intens_scale_range_lower, src_intens_scale_range_upper, src_intens_offset_range_lower, src_intens_offset_range_upper = \ cmdline_helpers.intens_aug_options(src_intens_scale_range, src_intens_offset_range) tgt_intens_scale_range_lower, tgt_intens_scale_range_upper, tgt_intens_offset_range_lower, tgt_intens_offset_range_upper = \ cmdline_helpers.intens_aug_options(tgt_intens_scale_range, tgt_intens_offset_range) import time import math import numpy as np from batchup import data_source, work_pool import data_loaders import standardisation import network_architectures import augmentation import torch, torch.cuda from torch import nn from torch.nn import functional as F import optim_weight_ema torch_device = torch.device(device) pool = work_pool.WorkerThreadPool(2) n_chn = 0 if exp == 'svhn_mnist': d_source = data_loaders.load_svhn(zero_centre=False, greyscale=True) d_target = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, val=False) elif exp == 'mnist_svhn': d_source = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True) d_target = data_loaders.load_svhn(zero_centre=False, greyscale=True, val=False) elif exp == 'svhn_mnist_rgb': d_source = data_loaders.load_svhn(zero_centre=False, greyscale=False) d_target = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, val=False, rgb=True) elif exp == 'mnist_svhn_rgb': d_source = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, rgb=True) d_target = data_loaders.load_svhn(zero_centre=False, greyscale=False, val=False) elif exp == 'cifar_stl': d_source = data_loaders.load_cifar10(range_01=False) d_target = data_loaders.load_stl(zero_centre=False, val=False) elif exp == 'stl_cifar': d_source = data_loaders.load_stl(zero_centre=False) d_target = data_loaders.load_cifar10(range_01=False, val=False) elif exp == 'mnist_usps': d_source = data_loaders.load_mnist(zero_centre=False) d_target = data_loaders.load_usps(zero_centre=False, scale28=True, val=False) elif exp == 'usps_mnist': d_source = data_loaders.load_usps(zero_centre=False, scale28=True) d_target = data_loaders.load_mnist(zero_centre=False, val=False) elif exp == 'syndigits_svhn': d_source = data_loaders.load_syn_digits(zero_centre=False) d_target = data_loaders.load_svhn(zero_centre=False, val=False) elif exp == 'synsigns_gtsrb': d_source = data_loaders.load_syn_signs(zero_centre=False) d_target = data_loaders.load_gtsrb(zero_centre=False, val=False) else: print('Unknown experiment type \'{}\''.format(exp)) return # Delete the training ground truths as we should not be using them del d_target.train_y if standardise_samples: standardisation.standardise_dataset(d_source) standardisation.standardise_dataset(d_target) n_classes = d_source.n_classes print('Loaded data') if arch == '': if exp in {'mnist_usps', 'usps_mnist'}: arch = 'mnist-bn-32-64-256' if exp in {'svhn_mnist', 'mnist_svhn'}: arch = 'grey-32-64-128-gp' if exp in { 'cifar_stl', 'stl_cifar', 'syndigits_svhn', 'svhn_mnist_rgb', 'mnist_svhn_rgb' }: arch = 'rgb-128-256-down-gp' if exp in {'synsigns_gtsrb'}: arch = 'rgb40-96-192-384-gp' net_class, expected_shape = network_architectures.get_net_and_shape_for_architecture( arch) if expected_shape != d_source.train_X.shape[1:]: print( 'Architecture {} not compatible with experiment {}; it needs samples of shape {}, ' 'data has samples of shape {}'.format(arch, exp, expected_shape, d_source.train_X.shape[1:])) return student_net = net_class(n_classes).to(torch_device) teacher_net = net_class(n_classes).to(torch_device) student_params = list(student_net.parameters()) teacher_params = list(teacher_net.parameters()) for param in teacher_params: param.requires_grad = False student_optimizer = torch.optim.Adam(student_params, lr=learning_rate) if fix_ema: teacher_optimizer = optim_weight_ema.EMAWeightOptimizer( teacher_net, student_net, alpha=teacher_alpha) else: teacher_optimizer = optim_weight_ema.OldWeightEMA(teacher_net, student_net, alpha=teacher_alpha) classification_criterion = nn.CrossEntropyLoss() print('Built network') src_aug = augmentation.ImageAugmentation( src_hflip, src_xlat_range, src_affine_std, intens_flip=src_intens_flip, intens_scale_range_lower=src_intens_scale_range_lower, intens_scale_range_upper=src_intens_scale_range_upper, intens_offset_range_lower=src_intens_offset_range_lower, intens_offset_range_upper=src_intens_offset_range_upper, gaussian_noise_std=src_gaussian_noise_std) tgt_aug = augmentation.ImageAugmentation( tgt_hflip, tgt_xlat_range, tgt_affine_std, intens_flip=tgt_intens_flip, intens_scale_range_lower=tgt_intens_scale_range_lower, intens_scale_range_upper=tgt_intens_scale_range_upper, intens_offset_range_lower=tgt_intens_offset_range_lower, intens_offset_range_upper=tgt_intens_offset_range_upper, gaussian_noise_std=tgt_gaussian_noise_std) if combine_batches: def augment(X_sup, y_src, X_tgt): X_src_stu, X_src_tea = src_aug.augment_pair(X_sup) X_tgt_stu, X_tgt_tea = tgt_aug.augment_pair(X_tgt) return X_src_stu, X_src_tea, y_src, X_tgt_stu, X_tgt_tea else: def augment(X_src, y_src, X_tgt): X_src = src_aug.augment(X_src) X_tgt_stu, X_tgt_tea = tgt_aug.augment_pair(X_tgt) return X_src, y_src, X_tgt_stu, X_tgt_tea rampup_weight_in_list = [0] cls_bal_fn = network_architectures.get_cls_bal_function(cls_balance_loss) def compute_aug_loss(stu_out, tea_out): # Augmentation loss if use_rampup: unsup_mask = None conf_mask_count = None unsup_mask_count = None else: conf_tea = torch.max(tea_out, 1)[0] unsup_mask = conf_mask = (conf_tea > confidence_thresh).float() unsup_mask_count = conf_mask_count = conf_mask.sum() if loss == 'bce': aug_loss = network_architectures.robust_binary_crossentropy( stu_out, tea_out) else: d_aug_loss = stu_out - tea_out aug_loss = d_aug_loss * d_aug_loss # Class balance scaling if cls_bal_scale: if use_rampup: n_samples = float(aug_loss.shape[0]) else: n_samples = unsup_mask.sum() avg_pred = n_samples / float(n_classes) bal_scale = avg_pred / torch.clamp(tea_out.sum(dim=0), min=1.0) if cls_bal_scale_range != 0.0: bal_scale = torch.clamp(bal_scale, min=1.0 / cls_bal_scale_range, max=cls_bal_scale_range) bal_scale = bal_scale.detach() aug_loss = aug_loss * bal_scale[None, :] aug_loss = aug_loss.mean(dim=1) if use_rampup: unsup_loss = aug_loss.mean() * rampup_weight_in_list[0] else: unsup_loss = (aug_loss * unsup_mask).mean() # Class balance loss if cls_balance > 0.0: # Compute per-sample average predicated probability # Average over samples to get average class prediction avg_cls_prob = stu_out.mean(dim=0) # Compute loss equalise_cls_loss = cls_bal_fn(avg_cls_prob, float(1.0 / n_classes)) equalise_cls_loss = equalise_cls_loss.mean() * n_classes if use_rampup: equalise_cls_loss = equalise_cls_loss * rampup_weight_in_list[0] else: if rampup == 0: equalise_cls_loss = equalise_cls_loss * unsup_mask.mean( dim=0) unsup_loss += equalise_cls_loss * cls_balance return unsup_loss, conf_mask_count, unsup_mask_count if combine_batches: def f_train(X_src0, X_src1, y_src, X_tgt0, X_tgt1): X_src0 = torch.tensor(X_src0, dtype=torch.float, device=torch_device) X_src1 = torch.tensor(X_src1, dtype=torch.float, device=torch_device) y_src = torch.tensor(y_src, dtype=torch.long, device=torch_device) X_tgt0 = torch.tensor(X_tgt0, dtype=torch.float, device=torch_device) X_tgt1 = torch.tensor(X_tgt1, dtype=torch.float, device=torch_device) n_samples = X_src0.size()[0] n_total = n_samples + X_tgt0.size()[0] student_optimizer.zero_grad() student_net.train() teacher_net.train() # Concatenate source and target mini-batches X0 = torch.cat([X_src0, X_tgt0], 0) X1 = torch.cat([X_src1, X_tgt1], 0) student_logits_out = student_net(X0) student_prob_out = F.softmax(student_logits_out, dim=1) src_logits_out = student_logits_out[:n_samples] src_prob_out = student_prob_out[:n_samples] teacher_logits_out = teacher_net(X1) teacher_prob_out = F.softmax(teacher_logits_out, dim=1) # Supervised classification loss if double_softmax: clf_loss = classification_criterion(src_prob_out, y_src) else: clf_loss = classification_criterion(src_logits_out, y_src) unsup_loss, conf_mask_count, unsup_mask_count = compute_aug_loss( student_prob_out, teacher_prob_out) loss_expr = clf_loss + unsup_loss * unsup_weight loss_expr.backward() student_optimizer.step() teacher_optimizer.step() outputs = [ float(clf_loss) * n_samples, float(unsup_loss) * n_total ] if not use_rampup: mask_count = float(conf_mask_count) * 0.5 unsup_count = float(unsup_mask_count) * 0.5 outputs.append(mask_count) outputs.append(unsup_count) return tuple(outputs) else: def f_train(X_src, y_src, X_tgt0, X_tgt1): X_src = torch.tensor(X_src, dtype=torch.float, device=torch_device) y_src = torch.tensor(y_src, dtype=torch.long, device=torch_device) X_tgt0 = torch.tensor(X_tgt0, dtype=torch.float, device=torch_device) X_tgt1 = torch.tensor(X_tgt1, dtype=torch.float, device=torch_device) student_optimizer.zero_grad() student_net.train() teacher_net.train() src_logits_out = student_net(X_src) student_tgt_logits_out = student_net(X_tgt0) student_tgt_prob_out = F.softmax(student_tgt_logits_out, dim=1) teacher_tgt_logits_out = teacher_net(X_tgt1) teacher_tgt_prob_out = F.softmax(teacher_tgt_logits_out, dim=1) # Supervised classification loss if double_softmax: clf_loss = classification_criterion( F.softmax(src_logits_out, dim=1), y_src) else: clf_loss = classification_criterion(src_logits_out, y_src) unsup_loss, conf_mask_count, unsup_mask_count = compute_aug_loss( student_tgt_prob_out, teacher_tgt_prob_out) loss_expr = clf_loss + unsup_loss * unsup_weight loss_expr.backward() student_optimizer.step() teacher_optimizer.step() n_samples = X_src.size()[0] outputs = [ float(clf_loss) * n_samples, float(unsup_loss) * n_samples ] if not use_rampup: mask_count = float(conf_mask_count) unsup_count = float(unsup_mask_count) outputs.append(mask_count) outputs.append(unsup_count) return tuple(outputs) print('Compiled training function') def f_pred_src(X_sup): X_var = torch.tensor(X_sup, dtype=torch.float, device=torch_device) student_net.eval() teacher_net.eval() return (F.softmax(student_net(X_var), dim=1).detach().cpu().numpy(), F.softmax(teacher_net(X_var), dim=1).detach().cpu().numpy()) def f_pred_tgt(X_sup): X_var = torch.tensor(X_sup, dtype=torch.float, device=torch_device) student_net.eval() teacher_net.eval() return (F.softmax(student_net(X_var), dim=1).detach().cpu().numpy(), F.softmax(teacher_net(X_var), dim=1).detach().cpu().numpy()) def f_eval_src(X_sup, y_sup): y_pred_prob_stu, y_pred_prob_tea = f_pred_src(X_sup) y_pred_stu = np.argmax(y_pred_prob_stu, axis=1) y_pred_tea = np.argmax(y_pred_prob_tea, axis=1) return (float( (y_pred_stu != y_sup).sum()), float((y_pred_tea != y_sup).sum())) def f_eval_tgt(X_sup, y_sup): y_pred_prob_stu, y_pred_prob_tea = f_pred_tgt(X_sup) y_pred_stu = np.argmax(y_pred_prob_stu, axis=1) y_pred_tea = np.argmax(y_pred_prob_tea, axis=1) return (float( (y_pred_stu != y_sup).sum()), float((y_pred_tea != y_sup).sum())) print('Compiled evaluation function') # Setup output def log(text): print(text) if log_file is not None: with open(log_file, 'a') as f: f.write(text + '\n') f.flush() f.close() cmdline_helpers.ensure_containing_dir_exists(log_file) # Report setttings log('Settings: {}'.format(', '.join([ '{}={}'.format(key, settings[key]) for key in sorted(list(settings.keys())) ]))) # Report dataset size log('Dataset:') log('SOURCE Train: X.shape={}, y.shape={}'.format(d_source.train_X.shape, d_source.train_y.shape)) log('SOURCE Test: X.shape={}, y.shape={}'.format(d_source.test_X.shape, d_source.test_y.shape)) log('TARGET Train: X.shape={}'.format(d_target.train_X.shape)) log('TARGET Test: X.shape={}, y.shape={}'.format(d_target.test_X.shape, d_target.test_y.shape)) print('Training...') sup_ds = data_source.ArrayDataSource([d_source.train_X, d_source.train_y], repeats=-1) tgt_train_ds = data_source.ArrayDataSource([d_target.train_X], repeats=-1) train_ds = data_source.CompositeDataSource([sup_ds, tgt_train_ds]).map(augment) train_ds = pool.parallel_data_source(train_ds) if epoch_size == 'large': n_samples = max(d_source.train_X.shape[0], d_target.train_X.shape[0]) elif epoch_size == 'small': n_samples = min(d_source.train_X.shape[0], d_target.train_X.shape[0]) elif epoch_size == 'target': n_samples = d_target.train_X.shape[0] n_train_batches = n_samples // batch_size source_test_ds = data_source.ArrayDataSource( [d_source.test_X, d_source.test_y]) target_test_ds = data_source.ArrayDataSource( [d_target.test_X, d_target.test_y]) if seed != 0: shuffle_rng = np.random.RandomState(seed) else: shuffle_rng = np.random train_batch_iter = train_ds.batch_iterator(batch_size=batch_size, shuffle=shuffle_rng) best_teacher_model_state = { k: v.cpu().numpy() for k, v in teacher_net.state_dict().items() } best_conf_mask_rate = 0.0 best_src_test_err = 1.0 for epoch in range(num_epochs): t1 = time.time() if use_rampup: if epoch < rampup: p = max(0.0, float(epoch)) / float(rampup) p = 1.0 - p rampup_value = math.exp(-p * p * 5.0) else: rampup_value = 1.0 rampup_weight_in_list[0] = rampup_value train_res = data_source.batch_map_mean(f_train, train_batch_iter, n_batches=n_train_batches) train_clf_loss = train_res[0] if combine_batches: unsup_loss_string = 'unsup (both) loss={:.6f}'.format(train_res[1]) else: unsup_loss_string = 'unsup (tgt) loss={:.6f}'.format(train_res[1]) src_test_err_stu, src_test_err_tea = source_test_ds.batch_map_mean( f_eval_src, batch_size=batch_size * 2) tgt_test_err_stu, tgt_test_err_tea = target_test_ds.batch_map_mean( f_eval_tgt, batch_size=batch_size * 2) if use_rampup: unsup_loss_string = '{}, rampup={:.3%}'.format( unsup_loss_string, rampup_value) if src_test_err_stu < best_src_test_err: best_src_test_err = src_test_err_stu best_teacher_model_state = { k: v.cpu().numpy() for k, v in teacher_net.state_dict().items() } improve = '*** ' else: improve = '' else: conf_mask_rate = train_res[-2] unsup_mask_rate = train_res[-1] if conf_mask_rate > best_conf_mask_rate: best_conf_mask_rate = conf_mask_rate improve = '*** ' best_teacher_model_state = { k: v.cpu().numpy() for k, v in teacher_net.state_dict().items() } else: improve = '' unsup_loss_string = '{}, conf mask={:.3%}, unsup mask={:.3%}'.format( unsup_loss_string, conf_mask_rate, unsup_mask_rate) t2 = time.time() log('{}Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}, {}; ' 'SRC TEST ERR={:.3%}, TGT TEST student err={:.3%}, TGT TEST teacher err={:.3%}' .format(improve, epoch, t2 - t1, train_clf_loss, unsup_loss_string, src_test_err_stu, tgt_test_err_stu, tgt_test_err_tea)) # Save network if model_file != '': cmdline_helpers.ensure_containing_dir_exists(model_file) with open(model_file, 'wb') as f: torch.save(best_teacher_model_state, f)
def experiment(exp, arch, rnd_init, img_size, confidence_thresh, teacher_alpha, unsup_weight, cls_balance, cls_balance_loss, learning_rate, pretrained_lr_factor, fix_layers, double_softmax, use_dropout, src_scale_u_range, src_scale_x_range, src_scale_y_range, src_affine_std, src_xlat_range, src_rot_std, src_hflip, src_intens_scale_range, src_colour_rot_std, src_colour_off_std, src_greyscale, src_cutout_prob, src_cutout_size, tgt_scale_u_range, tgt_scale_x_range, tgt_scale_y_range, tgt_affine_std, tgt_xlat_range, tgt_rot_std, tgt_hflip, tgt_intens_scale_range, tgt_colour_rot_std, tgt_colour_off_std, tgt_greyscale, tgt_cutout_prob, tgt_cutout_size, constrain_crop, img_pad_width, num_epochs, batch_size, epoch_size, seed, log_file, skip_epoch_eval, result_file, record_history, model_file, hide_progress_bar, subsetsize, subsetseed, device, num_threads): settings = locals().copy() if rnd_init: if fix_layers != '': print('`rnd_init` and `fix_layers` are mutually exclusive') return if epoch_size not in {'source', 'target'}: try: epoch_size = int(epoch_size) except ValueError: print( 'epoch_size should be an integer, \'source\', or \'target\', not {}' .format(epoch_size)) return import os import sys import pickle import cmdline_helpers fix_layers = [lyr.strip() for lyr in fix_layers.split(',')] if log_file == '': log_file = 'output_aug_log_{}.txt'.format(exp) elif log_file == 'none': log_file = None if log_file is not None: if os.path.exists(log_file): print('Output log file {} already exists'.format(log_file)) return src_intens_scale_range_lower, src_intens_scale_range_upper = cmdline_helpers.colon_separated_range( src_intens_scale_range) tgt_intens_scale_range_lower, tgt_intens_scale_range_upper = cmdline_helpers.colon_separated_range( tgt_intens_scale_range) src_scale_u_range = cmdline_helpers.colon_separated_range( src_scale_u_range) tgt_scale_u_range = cmdline_helpers.colon_separated_range( tgt_scale_u_range) src_scale_x_range = cmdline_helpers.colon_separated_range( src_scale_x_range) tgt_scale_x_range = cmdline_helpers.colon_separated_range( tgt_scale_x_range) src_scale_y_range = cmdline_helpers.colon_separated_range( src_scale_y_range) tgt_scale_y_range = cmdline_helpers.colon_separated_range( tgt_scale_y_range) import time import tqdm import math import tables import numpy as np from batchup import data_source, work_pool import image_dataset, visda17_dataset, office_dataset import network_architectures import augmentation import image_transforms from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit import torch, torch.cuda from torch import nn from torch.nn import functional as F import optim_weight_ema if hide_progress_bar: progress_bar = None else: progress_bar = tqdm.tqdm with torch.cuda.device(device): pool = work_pool.WorkerThreadPool(num_threads) n_chn = 0 half_batch_size = batch_size // 2 if arch == '': if exp in {'train_val', 'train_test'}: arch = 'resnet50' if rnd_init: mean_value = np.array([0.5, 0.5, 0.5]) std_value = np.array([0.5, 0.5, 0.5]) else: mean_value = np.array([0.485, 0.456, 0.406]) std_value = np.array([0.229, 0.224, 0.225]) img_shape = (img_size, img_size) img_padding = (img_pad_width, img_pad_width) if exp == 'visda_train_val': d_source = visda17_dataset.TrainDataset(img_size=img_shape, range01=True, rgb_order=True) d_target = visda17_dataset.ValidationDataset(img_size=img_shape, range01=True, rgb_order=True) elif exp == 'visda_train_test': d_source = visda17_dataset.TrainDataset(img_size=img_shape, range01=True, rgb_order=True) d_target = visda17_dataset.TestDataset(img_size=img_shape, range01=True, rgb_order=True) if not skip_epoch_eval: print('WARNING: setting skip_epoch_eval to True') skip_epoch_eval = True elif exp == 'office_amazon_dslr': d_source = office_dataset.OfficeAmazonDataset(img_size=img_shape, range01=True, rgb_order=True) d_target = office_dataset.OfficeDSLRDataset(img_size=img_shape, range01=True, rgb_order=True) elif exp == 'office_amazon_webcam': d_source = office_dataset.OfficeAmazonDataset(img_size=img_shape, range01=True, rgb_order=True) d_target = office_dataset.OfficeWebcamDataset(img_size=img_shape, range01=True, rgb_order=True) elif exp == 'office_dslr_amazon': d_source = office_dataset.OfficeDSLRDataset(img_size=img_shape, range01=True, rgb_order=True) d_target = office_dataset.OfficeAmazonDataset(img_size=img_shape, range01=True, rgb_order=True) elif exp == 'office_dslr_webcam': d_source = office_dataset.OfficeDSLRDataset(img_size=img_shape, range01=True, rgb_order=True) d_target = office_dataset.OfficeWebcamDataset(img_size=img_shape, range01=True, rgb_order=True) elif exp == 'office_webcam_amazon': d_source = office_dataset.OfficeWebcamDataset(img_size=img_shape, range01=True, rgb_order=True) d_target = office_dataset.OfficeAmazonDataset(img_size=img_shape, range01=True, rgb_order=True) elif exp == 'office_webcam_dslr': d_source = office_dataset.OfficeWebcamDataset(img_size=img_shape, range01=True, rgb_order=True) d_target = office_dataset.OfficeDSLRDataset(img_size=img_shape, range01=True, rgb_order=True) else: print('Unknown experiment type \'{}\''.format(exp)) return # Tensorboard log # Subset source_indices, target_indices, n_src, n_tgt = image_dataset.subset_indices( d_source, d_target, subsetsize, subsetseed) # # Result file # if result_file != '': cmdline_helpers.ensure_containing_dir_exists(result_file) h5_filters = tables.Filters(complevel=9, complib='blosc') f_target_pred = tables.open_file(result_file, mode='w') g_tgt_pred = f_target_pred.create_group(f_target_pred.root, 'target_pred_y', 'Target prediction') if record_history: arr_tgt_pred_history = f_target_pred.create_earray( g_tgt_pred, 'y_prob_history', tables.Float32Atom(), (0, n_tgt, d_target.n_classes), filters=h5_filters) else: arr_tgt_pred_history = None else: arr_tgt_pred_history = None f_target_pred = None g_tgt_pred = None n_classes = d_source.n_classes print('Loaded data') net_class = network_architectures.get_build_fn_for_architecture(arch) student_net = net_class(n_classes, img_size, use_dropout, not rnd_init).cuda() teacher_net = net_class(n_classes, img_size, use_dropout, not rnd_init).cuda() student_params = list(student_net.parameters()) teacher_params = list(teacher_net.parameters()) for param in teacher_params: param.requires_grad = False if rnd_init: new_student_optimizer = torch.optim.Adam(student_params, lr=learning_rate) pretrained_student_optimizer = None else: named_params = list(student_net.named_parameters()) new_params = [] pretrained_params = [] for name, param in named_params: if name.startswith('new_'): new_params.append(param) else: fix = False for lyr in fix_layers: if name.startswith(lyr + '.'): fix = True break if not fix: pretrained_params.append(param) else: print('Fixing param {}'.format(name)) param.requires_grad = False new_student_optimizer = torch.optim.Adam(new_params, lr=learning_rate) if len(pretrained_params) > 0: pretrained_student_optimizer = torch.optim.Adam( pretrained_params, lr=learning_rate * pretrained_lr_factor) else: pretrained_student_optimizer = None teacher_optimizer = optim_weight_ema.WeightEMA(teacher_params, student_params, alpha=teacher_alpha) classification_criterion = nn.CrossEntropyLoss() print('Built network') # Image augmentation src_aug = augmentation.ImageAugmentation( src_hflip, src_xlat_range, src_affine_std, rot_std=src_rot_std, intens_scale_range_lower=src_intens_scale_range_lower, intens_scale_range_upper=src_intens_scale_range_upper, colour_rot_std=src_colour_rot_std, colour_off_std=src_colour_off_std, greyscale=src_greyscale, scale_u_range=src_scale_u_range, scale_x_range=src_scale_x_range, scale_y_range=src_scale_y_range, cutout_probability=src_cutout_prob, cutout_size=src_cutout_size) tgt_aug = augmentation.ImageAugmentation( tgt_hflip, tgt_xlat_range, tgt_affine_std, rot_std=tgt_rot_std, intens_scale_range_lower=tgt_intens_scale_range_lower, intens_scale_range_upper=tgt_intens_scale_range_upper, colour_rot_std=tgt_colour_rot_std, colour_off_std=tgt_colour_off_std, greyscale=tgt_greyscale, scale_u_range=tgt_scale_u_range, scale_x_range=tgt_scale_x_range, scale_y_range=tgt_scale_y_range, cutout_probability=tgt_cutout_prob, cutout_size=tgt_cutout_size) test_aug = augmentation.ImageAugmentation( tgt_hflip, tgt_xlat_range, 0.0, rot_std=0.0, scale_u_range=tgt_scale_u_range, scale_x_range=tgt_scale_x_range, scale_y_range=tgt_scale_y_range) border_value = int(np.mean(mean_value) * 255 + 0.5) sup_xf = image_transforms.Compose( image_transforms.ScaleCropAndAugmentAffine(img_shape, img_padding, True, src_aug, border_value, mean_value, std_value), image_transforms.ToTensor(), ) if constrain_crop >= 0: unsup_xf = image_transforms.Compose( image_transforms.ScaleCropAndAugmentAffinePair( img_shape, img_padding, constrain_crop, True, tgt_aug, border_value, mean_value, std_value), image_transforms.ToTensor(), ) else: unsup_xf = image_transforms.Compose( image_transforms.ScaleCropAndAugmentAffine( img_shape, img_padding, True, tgt_aug, border_value, mean_value, std_value), image_transforms.ToTensor(), ) test_xf = image_transforms.Compose( image_transforms.ScaleAndCrop(img_shape, img_padding, False), image_transforms.ToTensor(), image_transforms.Standardise(mean_value, std_value), ) test_xf_aug_mult = image_transforms.Compose( image_transforms.ScaleCropAndAugmentAffineMultiple( 16, img_shape, img_padding, True, test_aug, border_value, mean_value, std_value), image_transforms.ToTensorMultiple(), ) if constrain_crop >= 0: def augment(X_sup, y_sup, X_tgt): X_sup = sup_xf(X_sup)[0] X_unsup_both = unsup_xf(X_tgt)[0] X_unsup_stu = X_unsup_both[:len(X_tgt)] X_unsup_tea = X_unsup_both[len(X_tgt):] return X_sup, y_sup, X_unsup_stu, X_unsup_tea else: def augment(X_sup, y_sup, X_tgt): X_sup = sup_xf(X_sup)[0] X_unsup_stu = unsup_xf(X_tgt)[0] X_unsup_tea = unsup_xf(X_tgt)[0] return X_sup, y_sup, X_unsup_stu, X_unsup_tea cls_bal_fn = network_architectures.get_cls_bal_function( cls_balance_loss) def compute_aug_loss(stu_out, tea_out): # Augmentation loss conf_tea = torch.max(tea_out, 1)[0] conf_mask = torch.gt(conf_tea, confidence_thresh).float() d_aug_loss = stu_out - tea_out aug_loss = d_aug_loss * d_aug_loss aug_loss = torch.mean(aug_loss, 1) * conf_mask # Class balance loss if cls_balance > 0.0: # Average over samples to get average class prediction avg_cls_prob = torch.mean(stu_out, 0) # Compute loss equalise_cls_loss = cls_bal_fn(avg_cls_prob, float(1.0 / n_classes)) equalise_cls_loss = torch.mean(equalise_cls_loss) * n_classes equalise_cls_loss = equalise_cls_loss * torch.mean( conf_mask, 0) else: equalise_cls_loss = None return aug_loss, conf_mask, equalise_cls_loss _one = torch.autograd.Variable( torch.from_numpy(np.array([1.0]).astype(np.float32)).cuda()) def f_train(X_sup, y_sup, X_unsup0, X_unsup1): X_sup = torch.autograd.Variable(torch.from_numpy(X_sup).cuda()) y_sup = torch.autograd.Variable( torch.from_numpy(y_sup).long().cuda()) X_unsup0 = torch.autograd.Variable( torch.from_numpy(X_unsup0).cuda()) X_unsup1 = torch.autograd.Variable( torch.from_numpy(X_unsup1).cuda()) if pretrained_student_optimizer is not None: pretrained_student_optimizer.zero_grad() new_student_optimizer.zero_grad() student_net.train(mode=True) teacher_net.train(mode=True) sup_logits_out = student_net(X_sup) student_unsup_logits_out = student_net(X_unsup0) student_unsup_prob_out = F.softmax(student_unsup_logits_out) teacher_unsup_logits_out = teacher_net(X_unsup1) teacher_unsup_prob_out = F.softmax(teacher_unsup_logits_out) # Supervised classification loss if double_softmax: clf_loss = classification_criterion(F.softmax(sup_logits_out), y_sup) else: clf_loss = classification_criterion(sup_logits_out, y_sup) aug_loss, conf_mask, cls_bal_loss = compute_aug_loss( student_unsup_prob_out, teacher_unsup_prob_out) conf_mask_count = torch.sum(conf_mask) unsup_loss = torch.mean(aug_loss) loss_expr = clf_loss + unsup_loss * unsup_weight if cls_bal_loss is not None: loss_expr = loss_expr + cls_bal_loss * cls_balance * unsup_weight loss_expr.backward() if pretrained_student_optimizer is not None: pretrained_student_optimizer.step() new_student_optimizer.step() teacher_optimizer.step() n_samples = X_sup.size()[0] mask_count = conf_mask_count.data.cpu()[0] outputs = [ float(clf_loss.data.cpu()[0]) * n_samples, float(unsup_loss.data.cpu()[0]) * n_samples, mask_count ] return tuple(outputs) print('Compiled training function') def f_pred_src(X_sup): X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda()) teacher_net.train(mode=False) return (F.softmax(teacher_net(X_var)).data.cpu().numpy(), ) def f_pred_tgt(X_sup): X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda()) teacher_net.train(mode=False) return (F.softmax(teacher_net(X_var)).data.cpu().numpy(), ) def f_pred_tgt_mult(X_sup): teacher_net.train(mode=False) y_pred_aug = [] for aug_i in range(len(X_sup)): X_var = torch.autograd.Variable( torch.from_numpy(X_sup[aug_i, ...]).cuda()) y_pred = F.softmax(teacher_net(X_var)).data.cpu().numpy() y_pred_aug.append(y_pred[None, ...]) y_pred_aug = np.concatenate(y_pred_aug, axis=0) return (y_pred_aug.mean(axis=0), ) print('Compiled evaluation function') # Setup output cmdline_helpers.ensure_containing_dir_exists(log_file) def log(text): print(text) if log_file is not None: with open(log_file, 'a') as f: f.write(text + '\n') f.flush() f.close() # Report setttings log('Program = {}'.format(sys.argv[0])) log('Settings: {}'.format(', '.join([ '{}={}'.format(key, settings[key]) for key in sorted(list(settings.keys())) ]))) # Report dataset size log('Dataset:') log('SOURCE len(X)={}, y.shape={}'.format(len(d_source.images), d_source.y.shape)) log('TARGET len(X)={}'.format(len(d_target.images))) if epoch_size == 'source': n_samples = n_src elif epoch_size == 'target': n_samples = n_tgt else: n_samples = epoch_size n_train_batches = n_samples // batch_size n_test_batches = n_tgt // (batch_size * 2) + 1 print('Training...') sup_ds = data_source.ArrayDataSource([d_source.images, d_source.y], repeats=-1, indices=source_indices) tgt_train_ds = data_source.ArrayDataSource([d_target.images], repeats=-1, indices=target_indices) train_ds = data_source.CompositeDataSource([sup_ds, tgt_train_ds]).map(augment) train_ds = pool.parallel_data_source(train_ds, batch_buffer_size=min( 20, n_train_batches)) target_ds_for_test = data_source.ArrayDataSource( [d_target.images], indices=target_indices) target_test_ds = target_ds_for_test.map(test_xf) target_test_ds = pool.parallel_data_source(target_test_ds, batch_buffer_size=min( 20, n_test_batches)) target_mult_test_ds = target_ds_for_test.map(test_xf_aug_mult) target_mult_test_ds = pool.parallel_data_source(target_mult_test_ds, batch_buffer_size=min( 20, n_test_batches)) if seed != 0: shuffle_rng = np.random.RandomState(seed) else: shuffle_rng = np.random if d_target.has_ground_truth: evaluator = d_target.prediction_evaluator(target_indices) else: evaluator = None best_mask_rate = 0.0 best_teacher_model_state = { k: v.cpu().numpy() for k, v in teacher_net.state_dict().items() } train_batch_iter = train_ds.batch_iterator(batch_size=batch_size, shuffle=shuffle_rng) for epoch in range(num_epochs): t1 = time.time() if not skip_epoch_eval: test_batch_iter = target_test_ds.batch_iterator( batch_size=batch_size * 2) else: test_batch_iter = None train_clf_loss, train_unsup_loss, mask_rate = data_source.batch_map_mean( f_train, train_batch_iter, progress_iter_func=progress_bar, n_batches=n_train_batches) # train_clf_loss, train_unsup_loss, mask_rate = train_ds.batch_map_mean( # f_train, batch_size=batch_size, shuffle=shuffle_rng, n_batches=n_train_batches, # progress_iter_func=progress_bar) if mask_rate > best_mask_rate: best_mask_rate = mask_rate improve = True improve_str = '*** ' best_teacher_model_state = { k: v.cpu().numpy() for k, v in teacher_net.state_dict().items() } else: improve = False improve_str = '' if not skip_epoch_eval: tgt_pred_prob_y, = data_source.batch_map_concat( f_pred_tgt, test_batch_iter, progress_iter_func=progress_bar) mean_class_acc, cls_acc_str = evaluator.evaluate( tgt_pred_prob_y) t2 = time.time() log('{}Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}, unsup loss={:.6f}, mask={:.3%}; ' 'TGT mean class acc={:.3%}'.format(improve_str, epoch, t2 - t1, train_clf_loss, train_unsup_loss, mask_rate, mean_class_acc)) log(' per class: {}'.format(cls_acc_str)) # Save results if arr_tgt_pred_history is not None: arr_tgt_pred_history.append( tgt_pred_prob_y[None, ...].astype(np.float32)) else: t2 = time.time() log('{}Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}, unsup loss={:.6f}, mask={:.3%}' .format(improve_str, epoch, t2 - t1, train_clf_loss, train_unsup_loss, mask_rate)) # Save network if model_file != '': cmdline_helpers.ensure_containing_dir_exists(model_file) with open(model_file, 'wb') as f: pickle.dump(best_teacher_model_state, f) # Restore network to best state teacher_net.load_state_dict({ k: torch.from_numpy(v) for k, v in best_teacher_model_state.items() }) # Predict on test set, without augmentation tgt_pred_prob_y, = target_test_ds.batch_map_concat( f_pred_tgt, batch_size=batch_size, progress_iter_func=progress_bar) if d_target.has_ground_truth: mean_class_acc, cls_acc_str = evaluator.evaluate(tgt_pred_prob_y) log('FINAL: TGT mean class acc={:.3%}'.format(mean_class_acc)) log(' per class: {}'.format(cls_acc_str)) # Predict on test set, using augmentation tgt_aug_pred_prob_y, = target_mult_test_ds.batch_map_concat( f_pred_tgt_mult, batch_size=batch_size, progress_iter_func=progress_bar) if d_target.has_ground_truth: aug_mean_class_acc, aug_cls_acc_str = evaluator.evaluate( tgt_aug_pred_prob_y) log('FINAL: TGT AUG mean class acc={:.3%}'.format( aug_mean_class_acc)) log(' per class: {}'.format(aug_cls_acc_str)) if f_target_pred is not None: f_target_pred.create_array(g_tgt_pred, 'y_prob', tgt_pred_prob_y) f_target_pred.create_array(g_tgt_pred, 'y_prob_aug', tgt_aug_pred_prob_y) f_target_pred.close()