コード例 #1
0
ファイル: tsc-train.old.py プロジェクト: dani1793/tsc-noise
def train_and_save_scores(epoch):
	net.train()
	train_loss = 0
	correct = 0
	total = 0
	abstain = 0

   	# for saving purpose
	global training_loss
	global train_abstained
	global train_acc
	global train_acc_without_abstained
	global train_f1score
	global train_f1score_without_abstained
	global train_predicted

	train_softmax_scores = []
	total = 0
	abstained = 0
	loss_acc = np.array([])
	batch_abstained = np.array([])
	batch_true = np.array([])
	batch_true_without_abstained = np.array([])
	batch_f1score = np.array([])
	batch_f1score_without_abstained = np.array([])
	if args.dataset == 'mnist':
	    if int(epoch/args.epdl) > 5 and  int(epoch/args.epdl) <= 20:
	    	args.lr = 0.01
	    if int(epoch/args.epdl) > 20 and int(epoch/args.epdl) <=50:
	    	args.lr = 0.001

#optimizer = optim.SGD(net.parameters(), lr=cf.learning_rate(args.lr, epoch), momentum=0.9, 
	    optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, 
	    	nesterov=args.nesterov, weight_decay=5e-4)
	    print('\n=> Training Epoch #%d, LR=%.4f' %(epoch, args.lr))
 

	else: #cifar 10/100/stl-10/tin200/fashion
		optimizer = optim.SGD(net.parameters(), lr=cf.learning_rate(args.lr, int(epoch/args.epdl)), momentum=0.9, weight_decay=5e-4,nesterov=args.nesterov)
		# optimizer = optim.Adam(net.parameters(), lr=cf.learning_rate(args.lr, int(epoch/args.epdl)))
		print('\n=> Training Epoch #%d, LR=%.4f' %(epoch, cf.learning_rate(args.lr, int(epoch/args.epdl))))

	print('\n => Training Epoch #%d, LR=%.4f' %(epoch, cf.learning_rate(args.lr, epoch)))
	sys.stdout.flush()
	#pdb.set_trace()	
	for batch_idx, (inputs, targets) in enumerate(trainloader):
    #print(dir(inputs.cuda))
    #quit() 
		optimizer.zero_grad()
		inputs, targets = Variable(inputs.to(device)), Variable(targets.to(device))
        
		if (args.net_type == 'tsc-lstm'): # update input to match lstm
			inputs = inputs.view(-1, series_length, 1) # input dimensions for time series data set are 1
		# print(inputs.shape)
		outputs = net(inputs)               # Forward Propagation
		#pdb.set_trace()
		if args.loss_fn is None:
			loss = criterion(outputs, targets)
		else:
			loss = criterion(outputs, targets, epoch)  # Loss

		loss.backward()  # Backward Propagation
		optimizer.step() # Optimizer update

		train_loss += loss.data.item()
		_, predicted = torch.max(outputs.data, 1)
		this_batch_size =targets.size(0) 
		total += this_batch_size
		correct += predicted.eq(targets.data).cpu().sum().data.item()

		abstained_now = predicted.eq(abstain_class_id).sum().data.item()
		abstain += abstained_now

		if total-abstain != 0:
			#pdb.set_trace()
			abst_acc = 100.*correct/(float(total-abstain))
		else:
			abst_acc = 1.
        
		p_out = F.softmax(outputs,dim=1)
		#pdb.set_trace()
		total += p_out.size(0)
		_,predicted = torch.max(p_out.data,1)
		abstained += predicted.eq(abstain_class_id).sum().data.item()
        
		train_softmax_scores.append(p_out.data)
		loss_acc = np.append(loss_acc, loss.data.item())
		f1score = f1_score(targets.cpu().numpy(), predicted.cpu().numpy(), average='weighted')
    
        
    # TODO: check if it works (get accuracy without abstension)
		batch_total = p_out.size(0)
		batch_abstained = np.append(batch_abstained, predicted.eq(abstain_class_id).sum().data.item() / batch_total)
		batch_true = np.append(batch_true, predicted.eq(targets.data).cpu().sum().data.item() / batch_total)
		batch_true_without_abstained = np.append(batch_true_without_abstained, abst_acc)
		batch_f1score = np.append(batch_f1score, f1score)
        
		non_abstained_index = np.invert(predicted.eq(abstain_class_id).cpu().detach().numpy()).nonzero()[0]
		f1score_without_abstained = f1_score(targets.cpu().numpy()[non_abstained_index], predicted.cpu().numpy()[non_abstained_index], average='weighted')
		batch_f1score_without_abstained = np.append(batch_f1score_without_abstained, f1score_without_abstained)
        
		#train_predicted = np.append(train_predicted, predicted.cpu())
		#print('\r')
		#print('| Epoch [%3d/%3d] Iter[%3d/%3d]\t\tAbstained %d Abstention rate %.4f Cumulative Abstention Rate: %.4f Loss: %.4f Acc@1: %.3f%% Acc@2: %.3f%%'
		        #%(epoch, num_epochs, batch_idx+1,
		         #   (len(trainset)//batch_size)+1, abstain, float(abstained_now)/this_batch_size, float(abstain)/total, loss.data.item(), 100.*correct/float(total), abst_acc))
		#sys.stdout.flush()
		print('\r')
		print('| Epoch [%3d/%3d] Iter[%3d/%3d]\t\tAbstained %d Abstention rate %.4f Cumulative Abstention Rate: %.4f Loss: %.4f Acc@1: %.3f%% Acc@2: %.3f%%'
		       %(epoch, num_epochs, batch_idx+1,
		            (len(trainset)//batch_size)+1, abstain, float(abstained_now)/this_batch_size, float(abstain)/total, loss.data.item(), 100.*correct/float(total), abst_acc))
		sys.stdout.flush()

	training_loss = np.append(training_loss, np.mean(loss_acc))
	train_abstained = np.append(train_abstained, np.mean(batch_abstained))
	train_acc = np.append(train_acc, np.mean(batch_true))
	train_acc_without_abstained = np.append(train_acc_without_abstained, np.mean(batch_true_without_abstained))
	train_scores = torch.cat(train_softmax_scores).cpu().numpy()
	train_f1score = np.append(train_f1score, np.mean(batch_f1score))
	train_f1score_without_abstained = np.append(train_f1score_without_abstained, np.mean(batch_f1score_without_abstained))
	if args.save_train_scores:
		print('Saving train softmax scores at  Epoch %d' %(epoch))
		fn = args.expt_name if args.expt_name else 'test'
		np.save(args.output_path+fn+"/"+ fn +".train_scores.epoch_"+str(epoch), train_scores)
	print("\n##### Epoch %d Train Abstention Rate at end of epoch %.4f" 
			%(epoch, float(abstained)/total))
コード例 #2
0
def train(epoch):
	net.train()
	train_loss = 0
	correct = 0
	total = 0
	abstain = 0

	if args.dataset == 'mnist':
	    if int(epoch/args.epdl) > 5 and  int(epoch/args.epdl) <= 20:
	    	args.lr = 0.01
	    if int(epoch/args.epdl) > 20 and int(epoch/args.epdl) <=50:
	    	args.lr = 0.001

    #optimizer = optim.SGD(net.parameters(), lr=cf.learning_rate(args.lr, epoch), momentum=0.9, 
	    optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, 
	    	nesterov=args.nesterov, weight_decay=5e-4)
	    print('\n=> Training Epoch #%d, LR=%.4f' %(epoch, args.lr))
 

	else: #cifar 10/100/stl-10/tin200/fashion
		optimizer = optim.SGD(net.parameters(), lr=cf.learning_rate(args.lr, int(epoch/args.epdl)),
		 momentum=0.9, weight_decay=5e-4,nesterov=args.nesterov)
		print('\n=> Training Epoch #%d, LR=%.4f' %(epoch, cf.learning_rate(args.lr, int(epoch/args.epdl))))

	#print('\n=> Training Epoch #%d, LR=%.4f' %(epoch, cf.learning_rate(args.lr, epoch)))
	#pdb.set_trace()	
	for batch_idx, (inputs, targets) in enumerate(trainloader):
        #print(dir(inputs.cuda))
        #quit()
		optimizer.zero_grad()
		inputs, targets = Variable(inputs), Variable(targets)
		if (args.net_type == 'tsc-lstm'): # update input to match lstm
			inputs = inputs.view(-1, series_length, 1) # input dimensions for time series data set are 1
		outputs = net(inputs)               # Forward Propagation
		#pdb.set_trace()
		if args.loss_fn is None:
			loss = criterion(outputs, targets)
		else:
			loss = criterion(outputs, targets, epoch)  # Loss

		loss.backward()  # Backward Propagation
		optimizer.step() # Optimizer update

		train_loss += loss.data.item()
		_, predicted = torch.max(outputs.data, 1)
		this_batch_size =targets.size(0) 
		total += this_batch_size
		correct += predicted.eq(targets.data).cpu().sum().data.item()

		abstained_now = predicted.eq(abstain_class_id).sum().data.item()
		abstain += abstained_now

		if total-abstain != 0:
			#pdb.set_trace()
			abst_acc = 100.*correct/(float(total-abstain))
		else:
			abst_acc = 1.

		sys.stdout.write('\r')
		sys.stdout.write('| Epoch [%3d/%3d] Iter[%3d/%3d]\t\tAbstained %d Abstention rate %.4f Cumulative Abstention Rate: %.4f Loss: %.4f Acc@1: %.3f%% Acc@2: %.3f%%'
		        %(epoch, num_epochs, batch_idx+1,
		            (len(trainset)//batch_size)+1, abstain, float(abstained_now)/this_batch_size, float(abstain)/total, loss.data.item(), 100.*correct/float(total), abst_acc))

		
		sys.stdout.flush()
コード例 #3
0
def train(epoch):
    net.train()
    train_loss = 0
    correct = 0
    total = 0
    abstain = 0

    if args.dataset == 'mnist':
        if int(epoch / args.epdl) > 5 and int(epoch / args.epdl) < 20:
            args.lr = 0.01
        if int(epoch / args.epdl) >= 20:
            args.lr = 0.001
#optimizer = optim.SGD(net.parameters(), lr=cf.learning_rate(args.lr, epoch), momentum=0.9,
        optimizer = optim.SGD(net.parameters(),
                              lr=args.lr,
                              momentum=0.9,
                              nesterov=args.nesterov,
                              weight_decay=5e-4)
        print('\n=> Training Epoch #%d, LR=%.4f' % (epoch, args.lr))

    else:  #cifar 10/100/stl-10/tin200/fashion
        optimizer = optim.SGD(net.parameters(),
                              lr=cf.learning_rate(args.lr,
                                                  int(epoch / args.epdl)),
                              momentum=0.9,
                              weight_decay=5e-4,
                              nesterov=args.nesterov)
        print('\n=> Training Epoch #%d, LR=%.4f' %
              (epoch, cf.learning_rate(args.lr, int(epoch / args.epdl))))

#print('\n=> Training Epoch #%d, LR=%.4f' %(epoch, cf.learning_rate(args.lr, epoch)))

    for batch_idx, (inputs, targets) in enumerate(trainloader):
        #print(type(inputs))
        #print(dir(inputs.cuda))
        #quit()
        if use_cuda:
            #pdb.set_trace()
            inputs, targets = inputs.cuda(cuda_device), targets.cuda(
                cuda_device)  # GPU settings
            #inputs, targets = inputs.cuda(), targets.cuda() # GPU settings
        optimizer.zero_grad()
        inputs, targets = Variable(inputs), Variable(targets)
        outputs = net(inputs)  # Forward Propagation
        if args.loss_fn is None:
            loss = criterion(outputs, targets)
        else:
            loss = criterion(outputs, targets, epoch)  # Loss

        loss.backward()  # Backward Propagation
        optimizer.step()  # Optimizer update

        train_loss += loss.data.item()
        _, predicted = torch.max(outputs.data, 1)
        total += targets.size(0)
        correct += predicted.eq(targets.data).cpu().sum().data.item()

        abstain += predicted.eq(abstain_class_id).sum().data.item()
        if total - abstain != 0:
            #pdb.set_trace()
            abst_acc = 100. * correct / (float(total - abstain))
        else:
            abst_acc = 1.

        sys.stdout.write('\r')
        sys.stdout.write(
            '| Epoch [%3d/%3d] Iter[%3d/%3d]\t\tAbstained %d Loss: %.4f Acc@1: %.3f%% Acc@2: %.3f%%'
            % (epoch, num_epochs, batch_idx + 1,
               (len(trainset) // batch_size) + 1, abstain, loss.data.item(),
               100. * correct / float(total), abst_acc))

        sys.stdout.flush()