def evalute_model(self, model, loader, gpu_id, input_size, num_classes, whole): mean_IU, IU_array = evaluate_main(model=model, loader = loader, gpu_id = gpu_id, input_size = input_size, num_classes = num_classes, whole = whole) return mean_IU, IU_array
from torch.utils import data from networks.pspnet_combine_S import Res_pspnet, BasicBlock, Bottleneck from networks.evaluate import evaluate_main from dataset.datasets import CSDataTestSet from utils.train_options import TrainOptionsForTest import torch from utils.utils import * if __name__ == '__main__': args = TrainOptionsForTest().initialize() testloader = data.DataLoader(CSDataTestSet( args.data_dir, './dataset/list/cityscapes/test.lst', crop_size=(1024, 2048)), batch_size=2, shuffle=False, pin_memory=True) # student = Res_pspnet(BasicBlock, [2, 2, 2, 2], num_classes = 19) # student.load_state_dict(torch.load(args.resume_from)) # evaluate_main(student, testloader, '0', '512,512', 19, True, type = 'test') teacher = Res_pspnet(Bottleneck, [3, 4, 23, 3], num_classes=19) # teacher.load_state_dict(torch.load(args.resume_from)) teacher.cuda() load_T_model(teacher, args.resume_from) evaluate_main(teacher, testloader, '0', '512,512', 19, True, type='test')
from torch.utils import data from networks.pspnet_combine import Res_pspnet, BasicBlock, Bottleneck from networks.evaluate import evaluate_main from dataset.datasets import CSDataTestSet from utils.train_options import TrainOptionsForTest import torch if __name__ == '__main__': args = TrainOptionsForTest().initialize() testloader = data.DataLoader(CSDataTestSet( args.data_dir, './dataset/list/cityscapes/test.lst', crop_size=(1024, 2048)), batch_size=1, shuffle=False, pin_memory=True) student = Res_pspnet(BasicBlock, [2, 2, 2, 2], num_classes=19) # resnet student.load_state_dict(torch.load(args.resume_from)) evaluate_main(student, testloader, '512,512', 19, True, type='test')