コード例 #1
0
    def _shared_cnn(self, inputs, is_train, reuse=False):
        """
        """
        shared_cnn_params = \
            [ConvParams(512, 3, (1, 1), 'same', False, True, 'conv1'),
             ConvParams(512, 3, (1, 1), 'same', False, True, 'conv2'),
             ConvParams(512, 3, (1, 1), 'same', False, True, 'conv3'),
             ConvParams(512, 3, (1, 1), 'same', False, True, 'conv4'),
             ConvParams(512, 3, (1, 1), 'same', False, True, 'conv5')]

        with tf.variable_scope("shared_cnn", reuse=reuse):
            conv1 = conv_layer(inputs, shared_cnn_params[0], is_train)
            conv1 = tf.pad(conv1, [[0, 0], [1, 1], [0, 0], [0, 0]])
            pool1 = pool_layer(conv1, 2, 'valid', 'pool1', wstride=1)

            conv2 = conv_layer(pool1, shared_cnn_params[1], is_train)
            conv2 = tf.pad(conv2, [[0, 0], [1, 1], [1, 1], [0, 0]])
            pool2 = pool_layer(conv2, 2, 'valid', 'pool2', wstride=1)

            conv3 = conv_layer(pool2, shared_cnn_params[2], is_train)
            pool3 = pool_layer(conv3, 2, 'valid', 'pool3', wstride=1)

            conv4 = conv_layer(pool3, shared_cnn_params[3], is_train)
            pool4 = pool_layer(conv4, 2, 'valid', 'pool4', wstride=1)

            conv5 = conv_layer(pool4, shared_cnn_params[4], is_train)
            pool5 = pool_layer(conv5, 2, 'valid', 'pool5', wstride=1)

            features = tf.reshape(pool5, (-1, 23, 512))

        return features
コード例 #2
0
    def _clue_network(self, inputs, is_train):
        """
        """
        clue_network_params = \
            [ConvParams(512, 3, (1, 1), 'same', False, True, 'conv1'),
             ConvParams(512, 3, (1, 1), 'same', False, True, 'conv2')]

        weight_initializer = tf.truncated_normal_initializer(stddev=0.01)
        bias_initializer = tf.constant_initializer(value=0.0)

        assert inputs.get_shape()[1:] == (26, 26, 256)

        with tf.variable_scope("clue_network"):
            conv1 = conv_layer(inputs, clue_network_params[0], is_train)
            conv1 = tf.pad(conv1, [[0, 0], [1, 1], [1, 1], [0, 0]])
            pool1 = pool_layer(conv1, 2, 'valid', 'pool1')

            conv2 = conv_layer(pool1, clue_network_params[1], is_train)
            conv2 = tf.pad(conv2, [[0, 0], [1, 1], [1, 1], [0, 0]])
            pool2 = pool_layer(conv2, 2, 'valid', 'pool2')

            features = tf.reshape(pool2, (-1, 64, 512))
            features = tf.transpose(features, perm=[0, 2, 1])
            features = tf.layers.dense(features,
                                       23,
                                       kernel_initializer=weight_initializer,
                                       bias_initializer=bias_initializer,
                                       activation=tf.nn.relu,
                                       name='length_dense')
            features = tf.contrib.layers.dropout(features,
                                                 keep_prob=0.8,
                                                 is_training=is_train)

            features = tf.transpose(features, perm=[0, 2, 1])
            features = tf.layers.dense(features,
                                       4,
                                       kernel_initializer=weight_initializer,
                                       bias_initializer=bias_initializer,
                                       activation=tf.nn.softmax,
                                       name='channel_dense')

            features = tf.transpose(features, perm=[0, 2, 1])
            features = tf.expand_dims(features, axis=-1)

        return features
コード例 #3
0
ファイル: GRCNN.py プロジェクト: EuphoriaYan/SATRN
    def _convnet_layers(self, inputs, widths, is_train):
        """
        Build convolutional network layers attached to the given input tensor
        """

        conv_params = \
            [ConvParams(64, 3, (1, 1), 'same', True, False, 'conv1'),
             ConvParams(512, 2, (1, 1), 'valid', False, True, 'conv2')]
        recur_params = [{'channel': 64}, {'channel': 128}, {'channel': 256}]

        with tf.variable_scope("convnet"):
            conv1 = conv_layer(inputs, conv_params[0], is_train)
            pool1 = pool_layer(conv1, 2, 'valid', 'pool1')
            grcl1 = self._gated_recurrent_conv_layer(pool1,
                                                     recur_params[0],
                                                     is_train,
                                                     iteration=3,
                                                     name='grcl1')

            pool2 = pool_layer(grcl1, 2, 'valid', 'pool2')
            grcl2 = self._gated_recurrent_conv_layer(pool2,
                                                     recur_params[1],
                                                     is_train,
                                                     iteration=3,
                                                     name='grcl2')

            grcl2 = tf.pad(grcl2, [[0, 0], [0, 0], [1, 1], [0, 0]])
            pool3 = pool_layer(grcl2, 2, 'valid', 'pool3', wstride=1)
            grcl3 = self._gated_recurrent_conv_layer(pool3,
                                                     recur_params[2],
                                                     is_train,
                                                     iteration=3,
                                                     name='grcl3')
            grcl3 = tf.pad(grcl3, [[0, 0], [0, 0], [1, 1], [0, 0]])

            pool4 = pool_layer(grcl3, 2, 'valid', 'pool4', wstride=1)
            conv2 = conv_layer(pool4, conv_params[1], is_train)
            features = tf.squeeze(conv2, axis=1, name='features')

            sequence_length = widths // 4 + 1
            sequence_length = tf.reshape(sequence_length, [-1], name='seq_len')

            return features, sequence_length
コード例 #4
0
    def _transformer_layers(self, inputs, widths, is_train):
        """
        """
        conv_params = \
            [ConvParams(self.hidden_size // 2, 3,
                        (1, 1), 'same', False, True, 'conv1'),
             ConvParams(self.hidden_size, 3,
                        (1, 1), 'same', False, True, 'conv2')]

        with tf.variable_scope("transformer_layers"):
            conv1 = conv_layer(inputs, conv_params[0], is_train)
            conv1 = pool_layer(conv1, 2, 'valid', 'pool1')
            conv2 = conv_layer(conv1, conv_params[1], is_train)
            conv2 = pool_layer(conv2, 2, 'valid', 'pool2')

            features, shape, weights = \
                self.transformer_encoder(conv2, self.enc_layers,
                                         self.hidden_size, is_train)
            features = tf.reshape(features,
                                  (shape[0], shape[1] * shape[2], shape[3]))

            return features, shape, weights
コード例 #5
0
    def _bcnn(self, inputs, is_train):
        """
        """
        bcnn_params = \
            [ConvParams(64, 3, (1, 1), 'same', False, True, 'conv1'),
             ConvParams(128, 3, (1, 1), 'same', False, True, 'conv2'),
             ConvParams(256, 3, (1, 1), 'same', False, True, 'conv3'),
             ConvParams(256, 3, (1, 1), 'same', False, True, 'conv4')]

        assert inputs.get_shape()[1:] == (100, 100, 1)

        with tf.variable_scope("bcnn"):
            conv1 = conv_layer(inputs, bcnn_params[0], is_train)
            pool1 = pool_layer(conv1, 2, 'valid', 'pool1')

            conv2 = conv_layer(pool1, bcnn_params[1], is_train)
            conv2 = tf.pad(conv2, [[0, 0], [1, 1], [1, 1], [0, 0]])
            pool2 = pool_layer(conv2, 2, 'valid', 'pool2')

            conv3 = conv_layer(pool2, bcnn_params[2], is_train)

            features = conv_layer(conv3, bcnn_params[3], is_train)

        return features
コード例 #6
0
    def _convnet_layers(self, inputs, widths, is_train):
        """
        Build convolutional network layers attached to the given input tensor
        """
        # Conv params : Filters K  Stride Padding  Bias   BN    Name
        conv_params = \
            [ConvParams(64, 3, (1, 1), 'same', True, False, 'conv1'),
             ConvParams(128, 3, (1, 1), 'same', True, False, 'conv2'),
             ConvParams(256, 3, (1, 1), 'same', True, False, 'conv3'),
             ConvParams(256, 3, (1, 1), 'same', True, False, 'conv4'),
             ConvParams(512, 3, (1, 1), 'same', False, True, 'conv5'),
             ConvParams(512, 3, (1, 1), 'same', False, True, 'conv6'),
             ConvParams(512, 2, (1, 1), 'valid', True, False, 'conv7')]

        with tf.variable_scope("convnet"):
            conv1 = conv_layer(inputs, conv_params[0], is_train)
            pool1 = pool_layer(conv1, 2, 'valid', 'pool1')

            conv2 = conv_layer(pool1, conv_params[1], is_train)
            pool2 = pool_layer(conv2, 2, 'valid', 'pool2')

            conv3 = conv_layer(pool2, conv_params[2], is_train)

            conv4 = conv_layer(conv3, conv_params[3], is_train)
            pool3 = pool_layer(conv4, 1, 'valid', 'pool3', wstride=1)

            conv5 = conv_layer(pool3, conv_params[4], is_train)

            conv6 = conv_layer(conv5, conv_params[5], is_train)
            pool4 = pool_layer(conv6, 1, 'valid', 'pool4', wstride=1)

            conv7 = conv_layer(pool4, conv_params[6], is_train)

            features = tf.squeeze(conv7, axis=1, name='features')

            sequence_length = widths // 4 - 1
            sequence_length = tf.reshape(sequence_length, [-1], name='seq_len')

            return features, sequence_length
コード例 #7
0
ファイル: SAR.py プロジェクト: EuphoriaYan/SATRN
    def _convnet_layers(self, inputs, widths, is_train):
        """
        Build convolutional network layers attached to the given input tensor
        """
        conv_params = \
            [  # conv1_x
                ConvParams(64, 3, (1, 1), 'same', False, True, 'conv1_1'),
                ConvParams(128, 3, (1, 1), 'same', False, True, 'conv1_2'),
                # conv2_x
                ConvParams(256, 1, (1, 1), 'same', False, True, 'conv2_1'),
                ConvParams(256, 3, (1, 1), 'same', False, True, 'resd2_1'),
                ConvParams(256, 3, (1, 1), 'same', False, True, 'resd2_2'),
                ConvParams(256, 3, (1, 1), 'same', False, True, 'conv2_2'),
                # conv3_x
                ConvParams(256, 1, (1, 1), 'same', False, True, 'conv3_1'),
                ConvParams(256, 3, (1, 1), 'same', False, True, 'resd3_1'),
                ConvParams(256, 3, (1, 1), 'same', False, True, 'resd3_2'),
                ConvParams(256, 3, (1, 1), 'same', False, True, 'conv3_2'),
                # conv4_x
                ConvParams(512, 1, (1, 1), 'same', False, True, 'conv4_1'),
                ConvParams(512, 3, (1, 1), 'same', False, True, 'resd4_1'),
                ConvParams(512, 3, (1, 1), 'same', False, True, 'resd4_2'),
                ConvParams(512, 3, (1, 1), 'same', False, True, 'conv4_2'),
                # conv5_x
                ConvParams(512, 1, (1, 1), 'same', False, True, 'conv5_1'),
                ConvParams(512, 3, (1, 1), 'same', False, True, 'resd5_1'),
                ConvParams(512, 3, (1, 1), 'same', False, True, 'resd5_2'),
                ConvParams(512, 3, (1, 1), 'same', False, True, 'conv5_2')]

        with tf.variable_scope("convnet"):
            conv1 = conv_layer(inputs, conv_params[0], is_train)
            conv1 = conv_layer(conv1, conv_params[1], is_train)

            conv2 = pool_layer(conv1, 2, 'valid', 'pool2')
            conv2 = residual_block(conv2,
                                   conv_params[3:5],
                                   is_train,
                                   shortcut_conv_param=conv_params[2],
                                   use_shortcut_conv=True)
            conv2 = conv_layer(conv2, conv_params[5], is_train)

            conv3 = pool_layer(conv2, 2, 'valid', 'pool3')
            for i in range(2):
                with tf.variable_scope('conv3_{}'.format(i)):
                    conv3 = residual_block(
                        conv3,
                        conv_params[7:9],
                        is_train,
                        shortcut_conv_param=(conv_params[6]
                                             if i == 0 else None),
                        use_shortcut_conv=(i == 0))
            conv3 = conv_layer(conv3, conv_params[9], is_train)

            conv4 = conv3
            for i in range(5):
                with tf.variable_scope('conv4_{}'.format(i)):
                    conv4 = residual_block(
                        conv4,
                        conv_params[11:13],
                        is_train,
                        shortcut_conv_param=(conv_params[10]
                                             if i == 0 else None),
                        use_shortcut_conv=(i == 0))
            conv4 = conv_layer(conv4, conv_params[13], is_train)

            conv5 = conv4
            for i in range(3):
                with tf.variable_scope('conv5_{}'.format(i)):
                    conv5 = residual_block(
                        conv5,
                        conv_params[15:17],
                        is_train,
                        shortcut_conv_param=(conv_params[14]
                                             if i == 0 else None),
                        use_shortcut_conv=(i == 0))
            conv5 = conv_layer(conv5, conv_params[17], is_train)

            features = conv5
            sequence_length = tf.reshape(widths // 4, [-1], name='seq_len')

            return features, sequence_length
コード例 #8
0
    def transformer_encoder(self, features, num_layers, hidden_size, is_train):
        """
        """
        with tf.variable_scope('transformer_enc'):
            attention_bias = 0

            # Position encoding
            batch_size = tf.shape(features)[0]
            height = tf.shape(features)[1]
            width = tf.shape(features)[2]
            const_h = self.FLAGS.resize_hw.height // 4
            const_w = self.FLAGS.resize_hw.width // 4
            h_encoding = self.get_position_encoding(height, hidden_size,
                                                    'h_encoding')
            w_encoding = self.get_position_encoding(width, hidden_size,
                                                    'w_encoding')
            h_encoding = tf.expand_dims(h_encoding, axis=1)
            w_encoding = tf.expand_dims(w_encoding, axis=0)
            h_encoding = tf.tile(tf.expand_dims(h_encoding, axis=0),
                                 [batch_size, 1, 1, 1])
            w_encoding = tf.tile(tf.expand_dims(w_encoding, axis=0),
                                 [batch_size, 1, 1, 1])

            # Adaptive 2D potisiontal encoding
            inter = tf.reduce_mean(features, axis=[1, 2])  # [B, hidden]
            inter = dense_layer(inter,
                                hidden_size // 2,
                                name='intermediate',
                                activation=tf.nn.relu)

            if is_train:
                inter = tf.nn.dropout(inter, self.dropout_rate)

            alpha = dense_layer(inter,
                                2 * hidden_size,
                                name='alpha',
                                activation=tf.nn.sigmoid)
            alpha = tf.reshape(alpha, [-1, 2, 1, hidden_size])
            pos_encoding = alpha[:, 0:1, :, :] * h_encoding \
                           + alpha[:, 1:2, :, :] * w_encoding

            features += pos_encoding
            self.hw = tf.reduce_sum(alpha, axis=[2, 3])

            # Save shape
            shape = (-1, height, width, hidden_size)
            features = tf.reshape(features, (-1, height * width, hidden_size))

            # Dropout
            if is_train:
                features = tf.nn.dropout(features, self.dropout_rate)

            # Encoder stack
            ws = []
            for n in range(num_layers):
                with tf.variable_scope("encoder_layer_%d" % n):
                    with tf.variable_scope("self_attention"):
                        # layer norm
                        y = self.layer_norm(features, hidden_size)

                        # self att
                        y, w = self.attention_layer(y, y, hidden_size,
                                                    attention_bias, 'self_att',
                                                    is_train)
                        ws.append(w)

                        # dropout
                        if is_train:
                            y = tf.nn.dropout(y, self.dropout_rate)

                        # skip
                        features = y + features

                    with tf.variable_scope("ffn"):
                        # layer norm
                        y = self.layer_norm(features, hidden_size)

                        # cnn
                        y = tf.reshape(features, shape)

                        conv_params = [
                            ConvParams(self.filter_size, 1, (1, 1), 'same',
                                       False, True, 'expand'),
                            ConvParams(self.filter_size, 3, (1, 1), 'same',
                                       False, True, 'dwconv'),
                            ConvParams(self.hidden_size, 1, (1, 1), 'same',
                                       False, True, 'reduce')
                        ]
                        y = conv_layer(y, conv_params[0], is_train)
                        y = depthwise_conv_layer(y, conv_params[1], is_train)
                        y = conv_layer(y, conv_params[2], is_train)
                        y = tf.reshape(y, (-1, height * width, hidden_size))

                        # skip
                        features = y + features

            # Output normalization
            features = self.layer_norm(features, hidden_size)
            ws = tf.stack(ws, axis=1)

        return features, shape, ws