コード例 #1
0
    def __init__(self,
                 input_shape,
                 num_outputs,
                 noisy=False,
                 sigma_init=0.5,
                 body=SimpleBody,
                 atoms=51):
        super(CategoricalDuelingDQN, self).__init__()

        self.input_shape = input_shape
        self.num_actions = num_outputs
        self.noisy = noisy
        self.atoms = atoms

        self.body = body(input_shape, num_outputs, noisy, sigma_init)

        self.adv1 = nn.Linear(self.body.feature_size(),
                              512) if not self.noisy else NoisyLinear(
                                  self.body.feature_size(), 512, sigma_init)
        self.adv2 = nn.Linear(512, self.num_actions *
                              self.atoms) if not self.noisy else NoisyLinear(
                                  512, self.num_actions *
                                  self.atoms, sigma_init)

        self.val1 = nn.Linear(self.body.feature_size(),
                              512) if not self.noisy else NoisyLinear(
                                  self.body.feature_size(), 512, sigma_init)
        self.val2 = nn.Linear(512, 1 *
                              self.atoms) if not self.noisy else NoisyLinear(
                                  512, 1 * self.atoms, sigma_init)
コード例 #2
0
    def __init__(self, input_shape, num_actions, noisy=False, sigma_init=0.5, body=SimpleBody):
        super(DQN, self).__init__()
        
        self.input_shape = input_shape
        self.num_actions = num_actions
        self.noisy=noisy

        self.body = body(input_shape, num_actions, noisy, sigma_init)

        self.fc1 = nn.Linear(self.body.feature_size(), 512) if not self.noisy else NoisyLinear(self.body.feature_size(), 512, sigma_init)
        self.fc2 = nn.Linear(512, self.num_actions) if not self.noisy else NoisyLinear(512, self.num_actions, sigma_init)
コード例 #3
0
ファイル: networks.py プロジェクト: zylhub/DeepRL-Tutorials
    def __init__(self,
                 input_shape,
                 num_actions,
                 noisy=False,
                 sigma_init=0.5,
                 gru_size=512,
                 bidirectional=False,
                 body=SimpleBody):
        super(DRQN, self).__init__()

        self.input_shape = input_shape
        self.num_actions = num_actions
        self.noisy = noisy
        self.gru_size = gru_size
        self.bidirectional = bidirectional
        self.num_directions = 2 if self.bidirectional else 1

        self.body = body(input_shape,
                         num_actions,
                         noisy=self.noisy,
                         sigma_init=sigma_init)
        self.gru = nn.GRU(self.body.feature_size(),
                          self.gru_size,
                          num_layers=1,
                          batch_first=True,
                          bidirectional=bidirectional)
        self.fc2 = nn.Linear(
            self.gru_size,
            self.num_actions) if not self.noisy else NoisyLinear(
                self.gru_size, self.num_actions, sigma_init)
コード例 #4
0
    def __init__(self, input_shape, num_actions, noisy=False, sigma_init=0.5):
        super(SimpleBody, self).__init__()
        
        self.input_shape = input_shape
        self.num_actions = num_actions
        self.noisy=noisy

        self.fc1 = nn.Linear(input_shape[0], 128) if not self.noisy else NoisyLinear(input_shape[0], 128, sigma_init)
コード例 #5
0
    def __init__(self, input_shape, num_actions, sigma_init=0.5, atoms=51):
        super(CategoricalDuelingDQN, self).__init__()
        
        self.input_shape = input_shape
        self.num_actions = num_actions
        self.atoms = atoms

        self.conv1 = nn.Conv2d(self.input_shape[0], 32, kernel_size=8, stride=4)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
        self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)

        self.adv1 = NoisyLinear(self.feature_size(), 512, sigma_init)
        self.adv2 = NoisyLinear(512, self.num_actions*self.atoms, sigma_init)

        self.val1 = NoisyLinear(self.feature_size(), 512, sigma_init)
        self.val2 = NoisyLinear(512, 1*self.atoms, sigma_init)
コード例 #6
0
class CategoricalDuelingDQN(nn.Module):
    def __init__(self, input_shape, num_actions, sigma_init=0.5, atoms=51):
        super(CategoricalDuelingDQN, self).__init__()
        
        self.input_shape = input_shape
        self.num_actions = num_actions
        self.atoms = atoms

        self.conv1 = nn.Conv2d(self.input_shape[0], 32, kernel_size=8, stride=4)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
        self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)

        self.adv1 = NoisyLinear(self.feature_size(), 512, sigma_init)
        self.adv2 = NoisyLinear(512, self.num_actions*self.atoms, sigma_init)

        self.val1 = NoisyLinear(self.feature_size(), 512, sigma_init)
        self.val2 = NoisyLinear(512, 1*self.atoms, sigma_init)
        
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        x = x.view(x.size(0), -1)
        adv = F.relu(self.adv1(x))
        adv = self.adv2(adv).view(-1, self.num_actions, self.atoms)

        val = F.relu(self.val1(x))
        val = self.val2(val).view(-1, 1, self.atoms)

        final = val + adv - adv.mean(dim=1).view(-1, 1, self.atoms)

        return F.softmax(final, dim=2)
    
    def feature_size(self):
        return self.conv3(self.conv2(self.conv1(torch.zeros(1, *self.input_shape)))).view(1, -1).size(1)

    def sample_noise(self):
        self.adv1.sample_noise()
        self.adv2.sample_noise()
        self.val1.sample_noise()
        self.val2.sample_noise()