def _make_layer(self, block, planes, blocks, stride=1): """Create sequential layers in a stage. Arguments: blocks: Resnet block to use. planes: Number of channels. blocks: Number of blocks in this stage. stride: Stride for the first layer in the stage.""" if blocks == 0: return nn.Sequential(nn.Identity()) norm_layer = self._norm_layer downsample = None if stride != 1: downsample = nn.Sequential( nn.AvgPool2d(2, stride), SpectralNorm(conv1x1(self.inplanes, planes * block.expansion)), norm_layer(planes * block.expansion), ) elif self.inplanes != planes * block.expansion: downsample = nn.Sequential( SpectralNorm(conv1x1(self.inplanes, planes * block.expansion, stride)), norm_layer(planes * block.expansion), ) layers = [block(self.inplanes, planes, stride, downsample, norm_layer)] self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, norm_layer=norm_layer)) return nn.Sequential(*layers)
def _make_layer(self, block, planes, blocks, stride=1): if blocks == 0: return nn.Sequential(nn.Identity()) norm_layer = self._norm_layer upsample = None if stride != 1: upsample = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), SpectralNorm( conv1x1(self.inplanes * self.enc_expansion, planes * block.expansion)), norm_layer(planes * block.expansion), ) elif self.inplanes != planes * block.expansion: upsample = nn.Sequential( SpectralNorm( conv1x1(self.inplanes * self.enc_expansion, planes * block.expansion)), norm_layer(planes * block.expansion), ) layers = [ block(self.inplanes, planes, stride, upsample, norm_layer, self.large_kernel, self.enc_expansion) ] self.inplanes = planes * block.expansion self.enc_expansion = 1 for _ in range(1, blocks): layers.append( block(self.inplanes, planes, norm_layer=norm_layer, large_kernel=self.large_kernel)) return nn.Sequential(*layers)
def __init__(self, inplanes, planes, stride=1, upsample=None, norm_layer=None, large_kernel=False, enc_expansion=1): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self.stride = stride conv = conv5x5 if large_kernel else conv3x3 # Both self.conv1 and self.downsample layers downsample the input when stride != 1 if self.stride > 1: self.conv1 = SpectralNorm( nn.ConvTranspose2d(inplanes * enc_expansion, inplanes, kernel_size=4, stride=2, padding=1, bias=False)) else: self.conv1 = SpectralNorm(conv(inplanes * enc_expansion, inplanes)) self.bn1 = norm_layer(inplanes) self.activation = nn.LeakyReLU(0.2, inplace=True) self.conv2 = SpectralNorm(conv(inplanes, planes)) self.bn2 = norm_layer(planes) self.upsample = upsample
def _make_shortcut(self, inplane, planes): return nn.Sequential( SpectralNorm(nn.Conv2d(inplane, planes, kernel_size=3, padding=1, bias=False)), nn.ReLU(inplace=True), self._norm_layer(planes), SpectralNorm(nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)), nn.ReLU(inplace=True), self._norm_layer(planes) )
def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = SpectralNorm(conv3x3(inplanes, planes, stride)) self.bn1 = norm_layer(planes) self.activation = nn.ReLU(inplace=True) self.conv2 = SpectralNorm(conv3x3(planes, planes)) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride
def __init__(self, block, layers, norm_layer=None, late_downsample=False): """Initialize the module. Arguments: block: Basic resnet block to use. layers: List of number of layers to use in each stage. norm_layer: Normalization layer to use. late_downsample: Set to true if the first downsampling operation should be done one stage late.""" super(ResNet_D, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.late_downsample = late_downsample self.midplanes = 64 if late_downsample else 32 self.start_stride = [1, 2, 1, 2] if late_downsample else [2, 1, 2, 1] self.conv1 = SpectralNorm(nn.Conv2d(3 + 3, 32, kernel_size=3, stride=self.start_stride[0], padding=1, bias=False)) self.conv2 = SpectralNorm(nn.Conv2d(32, self.midplanes, kernel_size=3, stride=self.start_stride[1], padding=1, bias=False)) self.conv3 = SpectralNorm(nn.Conv2d(self.midplanes, self.inplanes, kernel_size=3, stride=self.start_stride[2], padding=1, bias=False)) self.bn1 = norm_layer(32) self.bn2 = norm_layer(self.midplanes) self.bn3 = norm_layer(self.inplanes) self.activation = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 64, layers[0], stride=self.start_stride[3]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer_bottleneck = self._make_layer(block, 512, layers[3], stride=2) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_uniform_(m.weight_bar) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to [https://arxiv.org/abs/1706.02677]. for m in self.modules(): if isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) self.conv1.module.weight_bar.data[:, 3:, :, :] = 0
def __init__(self, kernel_size=3, features=32, stride=2, sigma=1): """Initialize the module. Arguments: kernel_size: Kernel size of the convolutions. features: Number of channels for the intermediate feature maps. stride: Stride for the pooling operation. sigma: Standard deviation of the normal distribution that is needed for the calculation of the gradient of the log-likelihood.""" super(SpectralRIM, self).__init__() self.sigma = sigma input_nc = 7 # RGB FG + RGB BG + Alpha padding = (kernel_size - 1) // 2 # Calculate padding based on the kernel size. # The pooling operation is a strided convolution. pool = lambda x, n: SpectralNorm( nn.Conv2d(x, n, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)) # No normalization, but using tanh as activation. norm = lambda x: nn.Sequential(nn.Tanh()) # The unpooling operation is a transposed convolution. unpool = lambda x, n: SpectralNorm( nn.ConvTranspose2d(x, n, kernel_size=3, stride=stride, padding=1, output_padding=1)) # The rnn part of the network. Input -> pool -> norm -> ConvGRU -> unpool -> norm -> ConvGRU. # This means there is one ConvGRU at half spatial size and one at full spatial size. self.rnn = MultiRNN([ EmbeddingWrapper(ConvGRU(features, 4 * features), pool(2 * input_nc, features), norm(features)) ] + [ EmbeddingWrapper(ConvGRU(features, 4 * features), unpool(4 * features, features), norm(features)) ]) # Final convolution at the end to reduce the number of channels back to the number of input channels. self.out = nn.Conv2d(4 * features, input_nc, kernel_size=kernel_size, padding=padding, bias=False)
def _make_shortcut(self, inplane, planes): """Create shortcut layer. Arguments: inplane: Number of input channels. planes: Number of output channels.""" return nn.Sequential( SpectralNorm(nn.Conv2d(inplane, planes, kernel_size=3, padding=1, bias=False)), nn.ReLU(inplace=True), self._norm_layer(planes), SpectralNorm(nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)), nn.ReLU(inplace=True), self._norm_layer(planes) )
def __init__(self, block, layers, norm_layer=None, large_kernel=False, late_downsample=False): super(ResNet_D_Dec, self).__init__() self.logger = logging.getLogger("Logger") if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.large_kernel = large_kernel self.kernel_size = 5 if self.large_kernel else 3 self.inplanes = 512 if layers[0] > 0 else 256 self.late_downsample = late_downsample self.midplanes = 64 if late_downsample else 32 self.conv1 = SpectralNorm( nn.ConvTranspose2d(self.midplanes, 32, kernel_size=4, stride=2, padding=1, bias=False)) self.bn1 = norm_layer(32) self.leaky_relu = nn.LeakyReLU(0.2, inplace=True) self.conv2 = nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size // 2) self.upsample = nn.UpsamplingNearest2d(scale_factor=2) self.tanh = nn.Tanh() self.layer1 = self._make_layer(block, 256, layers[0], stride=2) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 64, layers[2], stride=2) self.layer4 = self._make_layer(block, self.midplanes, layers[3], stride=2) for m in self.modules(): if isinstance(m, nn.Conv2d): if hasattr(m, "weight_bar"): nn.init.xavier_uniform_(m.weight_bar) else: nn.init.xavier_uniform_(m.weight) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 for m in self.modules(): if isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) self.logger.debug(self)
def __init__(self, block, layers, norm_layer=None, late_downsample=False): super(ResNet_D, self).__init__() self.logger = logging.getLogger("Logger") if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.late_downsample = late_downsample self.midplanes = 64 if late_downsample else 32 self.start_stride = [1, 2, 1, 2] if late_downsample else [2, 1, 2, 1] self.conv1 = SpectralNorm(nn.Conv2d(3 + CONFIG.model.mask_channel, 32, kernel_size=3, stride=self.start_stride[0], padding=1, bias=False)) self.conv2 = SpectralNorm(nn.Conv2d(32, self.midplanes, kernel_size=3, stride=self.start_stride[1], padding=1, bias=False)) self.conv3 = SpectralNorm(nn.Conv2d(self.midplanes, self.inplanes, kernel_size=3, stride=self.start_stride[2], padding=1, bias=False)) self.bn1 = norm_layer(32) self.bn2 = norm_layer(self.midplanes) self.bn3 = norm_layer(self.inplanes) self.activation = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 64, layers[0], stride=self.start_stride[3]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer_bottleneck = self._make_layer(block, 512, layers[3], stride=2) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_uniform_(m.weight_bar) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 for m in self.modules(): if isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) self.logger.debug("encoder conv1 weight shape: {}".format(str(self.conv1.module.weight_bar.data.shape))) self.conv1.module.weight_bar.data[:,3:,:,:] = 0 self.logger.debug(self)
def __init__(self, block, layers, norm_layer=None, late_downsample=False): """Initialize the module. Arguments: block: Basic block to use in each stage. layers: List of number of layers to use in each stage. norm_layer: Type of normalization layer. late_downsample: Set to true if the first downsampling operation should be done one stage late.""" super(ResGuidedCxtAtten, self).__init__(block, layers, norm_layer, late_downsample=late_downsample) first_inplane = 3 + 3 # RGB image + 3 channel trimap. self.shortcut_inplane = [first_inplane, self.midplanes, 64, 128, 256] self.shortcut_plane = [32, self.midplanes, 64, 128, 256] self.shortcut = nn.ModuleList() for stage, inplane in enumerate(self.shortcut_inplane): self.shortcut.append(self._make_shortcut(inplane, self.shortcut_plane[stage])) self.guidance_head = nn.Sequential( nn.ReflectionPad2d(1), SpectralNorm(nn.Conv2d(3, 16, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(16), nn.ReflectionPad2d(1), SpectralNorm(nn.Conv2d(16, 32, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(32), nn.ReflectionPad2d(1), SpectralNorm(nn.Conv2d(32, 128, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(128) ) self.gca = GuidedCxtAtten(128, 128) # Initialize the guidance head. for layers in range(len(self.guidance_head)): m = self.guidance_head[layers] if isinstance(m, nn.Conv2d): if hasattr(m, "weight_bar"): nn.init.xavier_uniform_(m.weight_bar) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = planes # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = SpectralNorm(conv1x1(inplanes, width)) self.bn1 = norm_layer(width) self.conv2 = SpectralNorm(conv3x3(width, width, stride)) self.bn2 = norm_layer(width) self.conv3 = SpectralNorm(conv1x1(width, planes * self.expansion)) self.bn3 = norm_layer(planes * self.expansion) self.activation = nn.ReLU(inplace=True) # self.activation = nn.LeakyReLU(0.2, inplace=True) self.downsample = downsample self.stride = stride
def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None): """Initialize the module. Arguments: inplanes: Number of input channels. planes: Number of output channels. stride: Convolution stride for the first convolution. downsample: Downsampling block. norm_layer: Normalization layer.""" super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d # Both self.conv1 and self.downsample layers downsample the input when stride != 1. self.conv1 = SpectralNorm(conv3x3(inplanes, planes, stride)) self.bn1 = norm_layer(planes) self.activation = nn.ReLU(inplace=True) self.conv2 = SpectralNorm(conv3x3(planes, planes)) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride
def __init__(self, inplanes, planes, stride=1, upsample=None, norm_layer=None, large_kernel=False): """Initialize the module. Arguments: inplanes: Number of input channels. planes: Number of output channels. stride: Convolution stride for the first convolution. upsample: Upsampling block. norm_layer: Normalization layer. large_kernel: Set to true if a large convolutional kernel should be used.""" super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self.stride = stride conv = conv5x5 if large_kernel else conv3x3 # Both self.conv1 and self.upsample layers upsample the input when stride != 1 if self.stride > 1: self.conv1 = SpectralNorm( nn.ConvTranspose2d(inplanes, inplanes, kernel_size=4, stride=2, padding=1, bias=False)) else: self.conv1 = SpectralNorm(conv(inplanes, inplanes)) self.bn1 = norm_layer(inplanes) self.activation = nn.LeakyReLU(0.2, inplace=True) self.conv2 = SpectralNorm(conv(inplanes, planes)) self.bn2 = norm_layer(planes) self.upsample = upsample
def _make_layer(self, block, planes, blocks, stride=1): """Create sequential layers in a stage. Arguments: blocks: Resnet block to use. planes: Number of channels. blocks: Number of blocks in this stage. stride: Stride for the first layer in the stage.""" if blocks == 0: return nn.Sequential(nn.Identity()) norm_layer = self._norm_layer upsample = None if stride != 1: upsample = nn.Sequential( nn.UpsamplingNearest2d(scale_factor=2), SpectralNorm(conv1x1(self.inplanes, planes * block.expansion)), norm_layer(planes * block.expansion), ) elif self.inplanes != planes * block.expansion: upsample = nn.Sequential( SpectralNorm(conv1x1(self.inplanes, planes * block.expansion)), norm_layer(planes * block.expansion), ) layers = [ block(self.inplanes, planes, stride, upsample, norm_layer, self.large_kernel) ] self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block(self.inplanes, planes, norm_layer=norm_layer, large_kernel=self.large_kernel)) return nn.Sequential(*layers)
def _make_layer(self, block, planes, blocks, stride=1): if blocks == 0: return nn.Sequential(nn.Identity()) norm_layer = self._norm_layer downsample = None if stride != 1: downsample = nn.Sequential( nn.AvgPool2d(2, stride), SpectralNorm(conv1x1(self.inplanes, planes * block.expansion)), norm_layer(planes * block.expansion), ) elif self.inplanes != planes * block.expansion: downsample = nn.Sequential( SpectralNorm(conv1x1(self.inplanes, planes * block.expansion, stride)), norm_layer(planes * block.expansion), ) layers = [block(self.inplanes, planes, stride, downsample, norm_layer)] self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, norm_layer=norm_layer)) return nn.Sequential(*layers)
def __init__(self, block, layers, norm_layer=None, late_downsample=False): super(ResGuidedCxtAtten, self).__init__(block, layers, norm_layer, late_downsample=late_downsample) first_inplane = 3 + CONFIG.model.trimap_channel self.shortcut_inplane = [first_inplane, self.midplanes, 64, 128, 256] self.shortcut_plane = [32, self.midplanes, 64, 128, 256] self.shortcut = nn.ModuleList() for stage, inplane in enumerate(self.shortcut_inplane): self.shortcut.append(self._make_shortcut(inplane, self.shortcut_plane[stage])) self.guidance_head = nn.Sequential( nn.ReflectionPad2d(1), SpectralNorm(nn.Conv2d(3, 16, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(16), nn.ReflectionPad2d(1), SpectralNorm(nn.Conv2d(16, 32, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(32), nn.ReflectionPad2d(1), SpectralNorm(nn.Conv2d(32, 128, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(128) ) self.gca = GuidedCxtAtten(128, 128) # initialize guidance head for layers in range(len(self.guidance_head)): m = self.guidance_head[layers] if isinstance(m, nn.Conv2d): if hasattr(m, "weight_bar"): nn.init.xavier_uniform_(m.weight_bar) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
def __init__(self, block, layers, norm_layer=None, late_downsample=False): super(ResLocalHOP_PosEmb, self).__init__(block, layers, norm_layer, late_downsample=late_downsample) first_inplane = 3 + CONFIG.model.trimap_channel self.shortcut_inplane = [ first_inplane, self.midplanes, 64 * block.expansion, 128 * block.expansion, 256 * block.expansion ] self.shortcut_plane = [32, self.midplanes, 64, 128, 256] self.shortcut = nn.ModuleList() for stage, inplane in enumerate(self.shortcut_inplane): self.shortcut.append( self._make_shortcut(inplane, self.shortcut_plane[stage])) self.guidance_head1 = nn.Sequential( # N x 16 x 256 x 256 nn.ReflectionPad2d(1), SpectralNorm( nn.Conv2d(3, 16, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(16), ) self.guidance_head2 = nn.Sequential( # N x 32 x 128 x 128 nn.ReflectionPad2d(1), SpectralNorm( nn.Conv2d(16, 32, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(32), ) self.guidance_head3 = nn.Sequential( # N x 64 x 64 x 64 nn.ReflectionPad2d(1), SpectralNorm( nn.Conv2d(32, 64, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(64)) self.guidance_head4 = nn.Sequential( # N x 64 x 32 x 32 nn.ReflectionPad2d(1), SpectralNorm( nn.Conv2d(64, 64, kernel_size=3, padding=0, stride=2, bias=False)), nn.ReLU(inplace=True), self._norm_layer(64)) for m in self.modules(): if isinstance(m, nn.Conv2d): if hasattr(m, "weight_bar"): nn.init.xavier_uniform_(m.weight_bar) else: nn.init.xavier_uniform_(m.weight) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
def __init__(self, block, layers, norm_layer=None, large_kernel=False, late_downsample=False): """Initialize the module. Arguments: block: Basic resnet block to use. layers: List of number of layers to use in each stage. norm_layer: Normalization layer to use. large_kernel: Set to true if a large convolutional kernel should be used. late_downsample: Set to true if the first downsampling operation should be done one stage late.""" super(ResNet_D_Dec, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.large_kernel = large_kernel self.kernel_size = 5 if self.large_kernel else 3 self.inplanes = 512 if layers[0] > 0 else 256 self.late_downsample = late_downsample self.midplanes = 64 if late_downsample else 32 self.conv1 = SpectralNorm( nn.ConvTranspose2d(self.midplanes, 32, kernel_size=4, stride=2, padding=1, bias=False)) self.bn1 = norm_layer(32) self.leaky_relu = nn.LeakyReLU(0.2, inplace=True) self.conv2 = nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size // 2) self.upsample = nn.UpsamplingNearest2d(scale_factor=2) self.tanh = nn.Tanh() self.layer1 = self._make_layer(block, 256, layers[0], stride=2) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 64, layers[2], stride=2) self.layer4 = self._make_layer(block, self.midplanes, layers[3], stride=2) for m in self.modules(): if isinstance(m, nn.Conv2d): if hasattr(m, "weight_bar"): nn.init.xavier_uniform_(m.weight_bar) else: nn.init.xavier_uniform_(m.weight) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to [https://arxiv.org/abs/1706.02677]. for m in self.modules(): if isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0)