コード例 #1
0
ファイル: models.py プロジェクト: hyfine/flownet2-pytorch
    def __init__(self, args, batchNorm=False, div_flow = 20.):
        super(FlowNet2CS,self).__init__()
        self.batchNorm = batchNorm
        self.div_flow = div_flow
        self.rgb_max = args.rgb_max
        self.args = args

        self.channelnorm = ChannelNorm()

        # First Block (FlowNetC)
        self.flownetc = FlowNetC.FlowNetC(args, batchNorm=self.batchNorm)
        self.upsample1 = nn.Upsample(scale_factor=4, mode='bilinear')

        if args.fp16:
            self.resample1 = nn.Sequential(
                            tofp32(), 
                            Resample2d(),
                            tofp16()) 
        else:
            self.resample1 = Resample2d()

        # Block (FlowNetS1)
        self.flownets_1 = FlowNetS.FlowNetS(args, batchNorm=self.batchNorm)
        self.upsample2 = nn.Upsample(scale_factor=4, mode='bilinear')

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if m.bias is not None:
                    init.uniform(m.bias)
                init.xavier_uniform(m.weight)

            if isinstance(m, nn.ConvTranspose2d):
                if m.bias is not None:
                    init.uniform(m.bias)
                init.xavier_uniform(m.weight)
コード例 #2
0
def detect_occlusion(fw_flow, bw_flow):

    ## fw-flow: img1 => img2
    ## bw-flow: img2 => img1

    with torch.no_grad():

        ## convert to tensor
        fw_flow_t = img2tensor(fw_flow).cuda()
        bw_flow_t = img2tensor(bw_flow).cuda()

        ## warp fw-flow to img2
        flow_warping = Resample2d().cuda()
        fw_flow_w = flow_warping(fw_flow_t, bw_flow_t)

        ## convert to numpy array
        fw_flow_w = tensor2img(fw_flow_w)

    ## occlusion
    fb_flow_sum = fw_flow_w + bw_flow
    fb_flow_mag = compute_flow_magnitude(fb_flow_sum)
    fw_flow_w_mag = compute_flow_magnitude(fw_flow_w)
    bw_flow_mag = compute_flow_magnitude(bw_flow)

    mask1 = fb_flow_mag > 0.01 * (fw_flow_w_mag + bw_flow_mag) + 0.5

    ## motion boundary
    fx_du, fx_dv, fy_du, fy_dv = compute_flow_gradients(bw_flow)
    fx_mag = fx_du**2 + fx_dv**2
    fy_mag = fy_du**2 + fy_dv**2

    mask2 = (fx_mag + fy_mag) > 0.01 * bw_flow_mag + 0.002

    ## combine mask
    mask = np.logical_or(mask1, mask2)
    occlusion = np.zeros((fw_flow.shape[0], fw_flow.shape[1]))
    occlusion[mask == 1] = 1

    return occlusion
コード例 #3
0
    ### start training
    while model.epoch < opts.epoch_max:

        model.epoch += 1

        ### re-generate train data loader for every epoch
        data_loader = utils.create_data_loader(train_dataset, opts, "train")

        ### update learning rate
        current_lr = utils.learning_rate_decay(opts, model.epoch)

        for param_group in optimizer.param_groups:
            param_group['lr'] = current_lr
        
        ## submodule
        flow_warping = Resample2d().to(device)
        downsampler = nn.AvgPool2d((2, 2), stride=2).to(device)


        ### criterion and loss recorder
        if opts.loss == 'L2':
            criterion = nn.MSELoss(size_average=True)
        elif opts.loss == 'L1':
            criterion = nn.L1Loss(size_average=True)
        else:
            raise Exception("Unsupported criterion %s" %opts.loss)
        
        
        ### start epoch
        ts = datetime.now()
        
コード例 #4
0
class Object(object):
    pass


""" Flownet """
args = Object()
args.rgb_max = 1.0
args.fp16 = False
FlowNet = networks.FlowNet2(args, requires_grad=False)
model_filename = os.path.join("pretrained_models", "FlowNet2_checkpoint.pth.tar")
checkpoint = torch.load(model_filename)
FlowNet.load_state_dict(checkpoint['state_dict'])
FlowNet = FlowNet.cuda()
""" Submodules """
flow_warping = Resample2d().cuda()
downsampler = nn.AvgPool2d((2, 2), stride=2).cuda()


def norm(t):
    return torch.sum(t * t, dim=1, keepdim=True)


def train_lstm_epoch(epoch, data_loader, model, criterion_L1, criterion_ssim, optimizer, opt):
    opt.w_ST, opt.w_LT, opt.w_Flow = 1.0, 1.0, 10.0
    model.train()
    ts = opt.t_stride

    ### start epoch
    for i, (inputs, masks, _) in enumerate(data_loader):
        # inputs: BxCxTxHxW
コード例 #5
0
    def __init__(self, args, batchNorm=False, div_flow = 20., requires_grad=False):
        super(FlowNet2,self).__init__()
        self.batchNorm = batchNorm
        self.div_flow = div_flow
        self.rgb_max = args.rgb_max
        self.args = args

        self.channelnorm = ChannelNorm()

        # First Block (FlowNetC)
        self.flownetc = networks.FlowNetC.FlowNetC(args, batchNorm=self.batchNorm)
        self.upsample1 = nn.Upsample(scale_factor=4, mode='bilinear')

        if args.fp16:
            self.resample1 = nn.Sequential(
                            tofp32(), 
                            Resample2d(),
                            tofp16()) 
        else:
            self.resample1 = Resample2d()

        # Block (FlowNetS1)
        self.flownets_1 = networks.FlowNetS.FlowNetS(args, batchNorm=self.batchNorm)
        self.upsample2 = nn.Upsample(scale_factor=4, mode='bilinear')
        if args.fp16:
            self.resample2 = nn.Sequential(
                            tofp32(), 
                            Resample2d(),
                            tofp16()) 
        else:
            self.resample2 = Resample2d()


        # Block (FlowNetS2)
        self.flownets_2 = networks.FlowNetS.FlowNetS(args, batchNorm=self.batchNorm)

        # Block (FlowNetSD)
        self.flownets_d = networks.FlowNetSD.FlowNetSD(args, batchNorm=self.batchNorm) 
        self.upsample3 = nn.Upsample(scale_factor=4, mode='nearest') 
        self.upsample4 = nn.Upsample(scale_factor=4, mode='nearest') 

        if args.fp16:
            self.resample3 = nn.Sequential(
                            tofp32(), 
                            Resample2d(),
                            tofp16()) 
        else:
            self.resample3 = Resample2d()

        if args.fp16:
            self.resample4 = nn.Sequential(
                            tofp32(), 
                            Resample2d(),
                            tofp16()) 
        else:
            self.resample4 = Resample2d()

        # Block (FLowNetFusion)
        self.flownetfusion = networks.FlowNetFusion.FlowNetFusion(args, batchNorm=self.batchNorm)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if m.bias is not None:
                    init.uniform_(m.bias)
                init.xavier_uniform_(m.weight)

            if isinstance(m, nn.ConvTranspose2d):
                if m.bias is not None:
                    init.uniform_(m.bias)
                init.xavier_uniform_(m.weight)
                # init_deconv_bilinear(m.weight)

        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False
コード例 #6
0
ファイル: FlowNetAPI.py プロジェクト: Guliisgreat/FlowAPI
    def __init__(self):
        super(FlowWarping, self).__init__()

        self.channelnorm = ChannelNorm()
        self.resample1 = Resample2d()