def test_simple(args):
    """Function to predict for a single image or folder of images
    """
    assert args.model_name is not None, \
        "You must specify the --model_name parameter."

    if torch.cuda.is_available() and not args.no_cuda:
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    print("-> Loading model from ", args.model_name)
    encoder_path = os.path.join(args.model_name, "encoder.pth")
    depth_decoder_path = os.path.join(args.model_name, "depth.pth")

    # LOADING PRETRAINED MODEL
    if args.no_ddv:
        encoder = networks.get_resnet101_asp_oc_dsn(2048,
                                                    args.no_self_attention,
                                                    False)
        depth_decoder = networks.DepthDecoder(encoder.num_ch_enc)
    else:
        encoder = networks.get_resnet101_asp_oc_dsn(128,
                                                    args.no_self_attention,
                                                    False)
        depth_decoder = networks.MSDepthDecoder(
            encoder.num_ch_enc, discretization=args.discretization)

    print("   Loading pretrained encoder")
    loaded_dict_enc = torch.load(encoder_path, map_location=device)

    # extract the height and width of image that this model was trained with
    feed_height = loaded_dict_enc['height']
    feed_width = loaded_dict_enc['width']
    filtered_dict_enc = {
        k: v
        for k, v in loaded_dict_enc.items() if k in encoder.state_dict()
    }
    encoder.load_state_dict(filtered_dict_enc)
    encoder.to(device)
    encoder.eval()

    print("   Loading pretrained decoder")
    loaded_dict = torch.load(depth_decoder_path, map_location=device)
    depth_decoder.load_state_dict(loaded_dict)

    print_size_of_model(encoder)
    print_size_of_model(depth_decoder)

    depth_decoder.to(device)
    depth_decoder.eval()

    # FINDING INPUT IMAGES
    if os.path.isfile(args.image_path):
        # Only testing on a single image
        paths = [args.image_path]
        output_directory = os.path.dirname(args.image_path)
    elif os.path.isdir(args.image_path):
        # Searching folder for images
        paths = glob.glob(
            os.path.join(args.image_path, '*.{}'.format(args.ext)))
        output_directory = args.image_path
    else:
        raise Exception("Can not find args.image_path: {}".format(
            args.image_path))

    print("-> Predicting on {:d} test images".format(len(paths)))

    # PREDICTING ON EACH IMAGE IN TURN
    timings = list()
    with torch.no_grad():
        for idx, image_path in enumerate(paths):

            if image_path.endswith("_disp.jpg"):
                # don't try to predict disparity for a disparity image!
                continue

            # Load image and preprocess
            input_image = pil.open(image_path).convert('RGB')
            original_width, original_height = input_image.size
            input_image = input_image.resize((feed_width, feed_height),
                                             pil.LANCZOS)
            input_image = transforms.ToTensor()(input_image).unsqueeze(0)

            # PREDICTION
            input_image = input_image.to(device)

            st = time.time()
            features = encoder(input_image)
            if args.no_ddv:
                outputs = depth_decoder(features)
            else:
                all_features = {}
                all_features['conv3'] = features[0]
                all_features['layer1'] = features[1]
                all_features['output'] = features[-1]
                outputs = depth_decoder(all_features)
            et = time.time()
            print('Elapsed time = {:0.4f} ms'.format((et - st) * 1000))
            timings.append((et - st) * 1000)

            # disp = outputs[("disp", 0)]
            disp = features[-1]
            disp_resized = torch.nn.functional.interpolate(
                disp, (original_height, original_width),
                mode="bilinear",
                align_corners=False)

            # Saving numpy file
            output_name = os.path.splitext(os.path.basename(image_path))[0]
            name_dest_npy = os.path.join(output_directory,
                                         "{}_disp.npy".format(output_name))
            scaled_disp, _ = disp_to_depth(disp, 0.1, 100)
            np.save(name_dest_npy, scaled_disp.cpu().numpy())

            # Saving colormapped depth image
            disp_resized_np = disp_resized.squeeze().cpu().numpy()
            vmax = np.percentile(disp_resized_np, 95)
            normalizer = mpl.colors.Normalize(vmin=disp_resized_np.min(),
                                              vmax=vmax)
            mapper = cm.ScalarMappable(norm=normalizer, cmap='blues')
            colormapped_im = (mapper.to_rgba(disp_resized_np)[:, :, :3] *
                              255).astype(np.uint8)
            im = pil.fromarray(colormapped_im)

            name_dest_im = os.path.join(output_directory,
                                        "{}_attn.jpeg".format(output_name))
            im.save(name_dest_im)

            print("   Processed {:d} of {:d} images - saved prediction to {}".
                  format(idx + 1, len(paths), name_dest_im))

    # print('Mean time elapsed: {:0.4f}'.format(np.mean(timings[11:])))
    # print('Std time elapsed: {:0.4f}'.format(np.std(timings[11:])))
    print('-> Done!')
def evaluate(opt):
    """Evaluates a pretrained model using a specified test set
    """
    MIN_DEPTH = 1e-3
    MAX_DEPTH = 80

    assert sum((opt.eval_mono, opt.eval_stereo)) == 1, \
        "Please choose mono or stereo evaluation by setting either --eval_mono or --eval_stereo"

    if opt.ext_disp_to_eval is None:

        opt.load_weights_folder = os.path.expanduser(opt.load_weights_folder)

        assert os.path.isdir(opt.load_weights_folder), \
            "Cannot find a folder at {}".format(opt.load_weights_folder)

        print("-> Loading weights from {}".format(opt.load_weights_folder))

        filenames = readlines(
            os.path.join(splits_dir, opt.eval_split, "test_files.txt"))
        encoder_path = os.path.join(opt.load_weights_folder, "encoder.pth")
        decoder_path = os.path.join(opt.load_weights_folder, "depth.pth")

        encoder_dict = torch.load(encoder_path)

        img_ext = '.png' if opt.png else '.jpg'
        dataset = datasets.KITTIRAWDataset(opt.data_path,
                                           filenames,
                                           encoder_dict['height'],
                                           encoder_dict['width'], [0],
                                           4,
                                           is_train=False,
                                           img_ext=img_ext)
        dataloader = DataLoader(dataset,
                                16,
                                shuffle=False,
                                num_workers=opt.num_workers,
                                pin_memory=True,
                                drop_last=False)

        if opt.no_ddv:
            encoder = networks.get_resnet101_asp_oc_dsn(
                2048, opt.no_self_attention, False)
            depth_decoder = networks.DepthDecoder(encoder.num_ch_enc)
        else:
            encoder = networks.get_resnet101_asp_oc_dsn(
                128, opt.no_self_attention, False)
            depth_decoder = networks.MSDepthDecoder(
                encoder.num_ch_enc, discretization=opt.discretization)

        model_dict = encoder.state_dict()
        encoder.load_state_dict(
            {k: v
             for k, v in encoder_dict.items() if k in model_dict})
        depth_decoder.load_state_dict(torch.load(decoder_path))

        encoder.cuda()
        encoder.eval()
        depth_decoder.cuda()
        depth_decoder.eval()

        pred_disps = []

        print("-> Computing predictions with size {}x{}".format(
            encoder_dict['width'], encoder_dict['height']))

        with torch.no_grad():
            for data in dataloader:
                input_color = data[("color", 0, 0)].cuda()

                if opt.post_process:
                    # Post-processed results require each image to have two forward passes
                    input_color = torch.cat(
                        (input_color, torch.flip(input_color, [3])), 0)

                features = encoder(input_color)
                if opt.no_ddv:
                    output = depth_decoder(features)
                else:
                    all_features = {}
                    all_features['conv3'] = features[0]
                    all_features['layer1'] = features[1]
                    all_features['output'] = features[-1]
                    output = depth_decoder(all_features)

                pred_disp, _ = disp_to_depth(output[("disp", 0)],
                                             opt.min_depth, opt.max_depth)
                pred_disp = pred_disp.cpu()[:, 0].numpy()

                if opt.post_process:
                    N = pred_disp.shape[0] // 2
                    pred_disp = batch_post_process_disparity(
                        pred_disp[:N], pred_disp[N:, :, ::-1])

                pred_disps.append(pred_disp)

        pred_disps = np.concatenate(pred_disps)

    else:
        # Load predictions from file
        print("-> Loading predictions from {}".format(opt.ext_disp_to_eval))
        pred_disps = np.load(opt.ext_disp_to_eval)

        if opt.eval_eigen_to_benchmark:
            eigen_to_benchmark_ids = np.load(
                os.path.join(splits_dir, "benchmark",
                             "eigen_to_benchmark_ids.npy"))

            pred_disps = pred_disps[eigen_to_benchmark_ids]

    if opt.save_pred_disps:
        output_path = os.path.join(opt.load_weights_folder,
                                   "disps_{}_split.npy".format(opt.eval_split))
        print("-> Saving predicted disparities to ", output_path)
        np.save(output_path, pred_disps)

    if opt.no_eval:
        print("-> Evaluation disabled. Done.")
        quit()

    elif opt.eval_split == 'benchmark':
        save_dir = os.path.join(opt.load_weights_folder,
                                "benchmark_predictions")
        print("-> Saving out benchmark predictions to {}".format(save_dir))
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx in range(len(pred_disps)):
            disp_resized = cv2.resize(pred_disps[idx], (1216, 352))
            depth = STEREO_SCALE_FACTOR / disp_resized
            depth = np.clip(depth, 0, 80)
            depth = np.uint16(depth * 256)
            save_path = os.path.join(save_dir, "{:010d}.png".format(idx))
            cv2.imwrite(save_path, depth)

        print(
            "-> No ground truth is available for the KITTI benchmark, so not evaluating. Done."
        )
        quit()

    gt_path = os.path.join(splits_dir, opt.eval_split, "gt_depths.npz")
    gt_depths = np.load(gt_path,
                        fix_imports=True,
                        encoding='latin1',
                        allow_pickle=True)["data"]

    print("-> Evaluating")

    if opt.eval_stereo:
        print("   Stereo evaluation - "
              "disabling median scaling, scaling by {}".format(
                  STEREO_SCALE_FACTOR))
        opt.disable_median_scaling = True
        opt.pred_depth_scale_factor = STEREO_SCALE_FACTOR
    else:
        print("   Mono evaluation - using median scaling")

    errors = []
    ratios = []

    for i in range(pred_disps.shape[0]):

        gt_depth = gt_depths[i]
        gt_height, gt_width = gt_depth.shape[:2]

        pred_disp = pred_disps[i]
        pred_disp = cv2.resize(pred_disp, (gt_width, gt_height))
        pred_depth = 1 / pred_disp

        if opt.eval_split == "eigen":
            mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH)

            crop = np.array([
                0.40810811 * gt_height, 0.99189189 * gt_height,
                0.03594771 * gt_width, 0.96405229 * gt_width
            ]).astype(np.int32)
            crop_mask = np.zeros(mask.shape)
            crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1
            mask = np.logical_and(mask, crop_mask)

        else:
            mask = gt_depth > 0

        pred_depth = pred_depth[mask]
        gt_depth = gt_depth[mask]

        pred_depth *= opt.pred_depth_scale_factor
        if not opt.disable_median_scaling:
            ratio = np.median(gt_depth) / np.median(pred_depth)
            ratios.append(ratio)
            pred_depth *= ratio

        pred_depth[pred_depth < MIN_DEPTH] = MIN_DEPTH
        pred_depth[pred_depth > MAX_DEPTH] = MAX_DEPTH

        errors.append(compute_errors(gt_depth, pred_depth))

    if not opt.disable_median_scaling:
        ratios = np.array(ratios)
        med = np.median(ratios)
        print(" Scaling ratios | med: {:0.3f} | std: {:0.3f}".format(
            med, np.std(ratios / med)))

    mean_errors = np.array(errors).mean(0)

    print("\n  " +
          ("{:>8} | " * 7
           ).format("abs_rel", "sq_rel", "rmse", "rmse_log", "a1", "a2", "a3"))
    print(("&{: 8.3f}  " * 7).format(*mean_errors.tolist()) + "\\\\")
    print("\n-> Done!")
    def __init__(self, options):
        self.opt = options
        self.log_path = os.path.join(self.opt.log_dir, self.opt.model_name)

        # checking height and width are multiples of 32
        assert self.opt.height % 32 == 0, "'height' must be a multiple of 32"
        assert self.opt.width % 32 == 0, "'width' must be a multiple of 32"

        self.models = {}
        self.parameters_to_train = []

        self.device = torch.device("cpu" if self.opt.no_cuda else "cuda")

        self.num_scales = len(self.opt.scales)
        self.num_input_frames = len(self.opt.frame_ids)
        self.num_pose_frames = 2 if self.opt.pose_model_input == "pairs" else self.num_input_frames

        assert self.opt.frame_ids[0] == 0, "frame_ids must start with 0"

        self.use_pose_net = not (self.opt.use_stereo
                                 and self.opt.frame_ids == [0])

        if self.opt.use_stereo:
            self.opt.frame_ids.append("s")

        if self.opt.no_ddv:
            self.models["encoder"] = networks.get_resnet101_asp_oc_dsn(
                2048, self.opt.no_self_attention,
                self.opt.weights_init == "pretrained")
            self.models["encoder"].to(self.device)
            self.parameters_to_train += list(
                self.models["encoder"].parameters())
            self.models["depth"] = networks.DepthDecoder(
                self.models["encoder"].num_ch_enc, self.opt.scales)
            self.models["depth"].to(self.device)
            self.parameters_to_train += list(self.models["depth"].parameters())
        else:
            self.models["encoder"] = networks.get_resnet101_asp_oc_dsn(
                128, self.opt.no_self_attention,
                self.opt.weights_init == "pretrained")
            self.models["encoder"].to(self.device)
            self.parameters_to_train += list(
                self.models["encoder"].parameters())
            self.models["depth"] = networks.MSDepthDecoder(
                self.models["encoder"].num_ch_enc,
                self.opt.scales,
                discretization=self.opt.discretization)
            self.models["depth"].to(self.device)
            self.parameters_to_train += list(self.models["depth"].parameters())

        if self.use_pose_net:
            if self.opt.pose_model_type == "separate_resnet":
                self.models["pose_encoder"] = networks.ResnetEncoder(
                    self.opt.num_layers,
                    self.opt.weights_init == "pretrained",
                    num_input_images=self.num_pose_frames)

                self.models["pose_encoder"].to(self.device)
                self.parameters_to_train += list(
                    self.models["pose_encoder"].parameters())

                self.models["pose"] = networks.PoseDecoder(
                    self.models["pose_encoder"].num_ch_enc,
                    num_input_features=1,
                    num_frames_to_predict_for=2)

            elif self.opt.pose_model_type == "shared":
                self.models["pose"] = networks.PoseDecoder(
                    self.models["encoder"].num_ch_enc, self.num_pose_frames)

            elif self.opt.pose_model_type == "posecnn":
                self.models["pose"] = networks.PoseCNN(
                    self.num_input_frames if self.opt.pose_model_input ==
                    "all" else 2)

            self.models["pose"].to(self.device)
            self.parameters_to_train += list(self.models["pose"].parameters())

        if self.opt.predictive_mask:
            assert self.opt.disable_automasking, \
                "When using predictive_mask, please disable automasking with --disable_automasking"

            # Our implementation of the predictive masking baseline has the the same architecture
            # as our depth decoder. We predict a separate mask for each source frame.
            self.models["predictive_mask"] = networks.DepthDecoder(
                self.models["encoder"].num_ch_enc,
                self.opt.scales,
                num_output_channels=(len(self.opt.frame_ids) - 1))
            self.models["predictive_mask"].to(self.device)
            self.parameters_to_train += list(
                self.models["predictive_mask"].parameters())

        self.model_optimizer = optim.Adam(self.parameters_to_train,
                                          self.opt.learning_rate)
        self.model_lr_scheduler = optim.lr_scheduler.StepLR(
            self.model_optimizer, self.opt.scheduler_step_size, 0.1)

        if self.opt.load_weights_folder is not None:
            self.load_model()

        print("Training model named:\n  ", self.opt.model_name)
        print("Models and tensorboard events files are saved to:\n  ",
              self.opt.log_dir)
        print("Training is using:\n  ", self.device)

        # data
        datasets_dict = {
            "kitti": datasets.KITTIRAWDataset,
            "kitti_odom": datasets.KITTIOdomDataset
        }
        self.dataset = datasets_dict[self.opt.dataset]

        fpath = os.path.join(os.path.dirname(__file__), "splits",
                             self.opt.split, "{}_files.txt")

        train_filenames = readlines(fpath.format("train"))
        val_filenames = readlines(fpath.format("val"))
        img_ext = '.png' if self.opt.png else '.jpg'

        num_train_samples = len(train_filenames)
        self.num_total_steps = num_train_samples // self.opt.batch_size * self.opt.num_epochs

        train_dataset = self.dataset(self.opt.data_path,
                                     train_filenames,
                                     self.opt.height,
                                     self.opt.width,
                                     self.opt.frame_ids,
                                     4,
                                     is_train=True,
                                     img_ext=img_ext)
        self.train_loader = DataLoader(train_dataset,
                                       self.opt.batch_size,
                                       True,
                                       num_workers=self.opt.num_workers,
                                       pin_memory=True,
                                       drop_last=True)
        val_dataset = self.dataset(self.opt.data_path,
                                   val_filenames,
                                   self.opt.height,
                                   self.opt.width,
                                   self.opt.frame_ids,
                                   4,
                                   is_train=False,
                                   img_ext=img_ext)
        self.val_loader = DataLoader(val_dataset,
                                     self.opt.batch_size,
                                     True,
                                     num_workers=self.opt.num_workers,
                                     pin_memory=True,
                                     drop_last=True)
        self.val_iter = iter(self.val_loader)

        self.writers = {}
        for mode in ["train", "val"]:
            self.writers[mode] = SummaryWriter(
                os.path.join(self.log_path, mode))

        if not self.opt.no_ssim:
            self.ssim = SSIM()
            self.ssim.to(self.device)

        self.backproject_depth = {}
        self.project_3d = {}
        for scale in self.opt.scales:
            h = self.opt.height // (2**scale)
            w = self.opt.width // (2**scale)

            self.backproject_depth[scale] = BackprojectDepth(
                self.opt.batch_size, h, w)
            self.backproject_depth[scale].to(self.device)

            self.project_3d[scale] = Project3D(self.opt.batch_size, h, w)
            self.project_3d[scale].to(self.device)

        self.depth_metric_names = [
            "de/abs_rel", "de/sq_rel", "de/rms", "de/log_rms", "da/a1",
            "da/a2", "da/a3"
        ]

        print("Using split:\n  ", self.opt.split)
        print(
            "There are {:d} training items and {:d} validation items\n".format(
                len(train_dataset), len(val_dataset)))

        self.save_opts()
コード例 #4
0
def evaluate(opt):
    """Evaluates a pretrained model using a specified test set
    """
    MIN_DEPTH = 0.001
    MAX_DEPTH = 80

    opt.load_weights_folder = os.path.expanduser(opt.load_weights_folder)

    assert os.path.isdir(opt.load_weights_folder), \
        "Cannot find a folder at {}".format(opt.load_weights_folder)

    print("-> Loading weights from {}".format(opt.load_weights_folder))

    encoder_path = os.path.join(opt.load_weights_folder, "encoder.pth")
    decoder_path = os.path.join(opt.load_weights_folder, "depth.pth")

    encoder_dict = torch.load(encoder_path)

    # Evaluate on cityscapes dataset
    CITY_DIR = opt.data_path
    cityscapes = datasets.CityscapesData(CITY_DIR)
    cityscapes_dataloader = DataLoader(cityscapes,
                                       4,
                                       shuffle=False,
                                       num_workers=6,
                                       pin_memory=True,
                                       drop_last=False)

    encoder = networks.get_resnet101_asp_oc_dsn(128, opt.no_self_attention,
                                                False)
    depth_decoder = networks.MSDepthDecoder(encoder.num_ch_enc,
                                            discretization=opt.discretization)

    model_dict = encoder.state_dict()
    encoder.load_state_dict(
        {k: v
         for k, v in encoder_dict.items() if k in model_dict})
    depth_decoder.load_state_dict(torch.load(decoder_path))

    encoder.cuda()
    encoder.eval()
    depth_decoder.cuda()
    depth_decoder.eval()

    pred_disps = []

    print("-> Computing predictions with size {}x{}".format(
        encoder_dict['width'], encoder_dict['height']))

    with torch.no_grad():
        for data in cityscapes_dataloader:
            input_color = data.permute(0, 3, 1, 2)
            input_color = input_color.cuda()
            output = depth_decoder(encoder(input_color))

            pred_disp, _ = disp_to_depth(output[("disp", 0)], opt.min_depth,
                                         opt.max_depth)
            pred_disp = pred_disp.cpu()[:, 0].numpy()

            pred_disps.append(pred_disp)

    pred_disps = np.concatenate(pred_disps)

    gt_path = os.path.join(splits_dir, "gt_depths_cityscapes.npz")
    gt_depths = np.load(gt_path,
                        fix_imports=True,
                        encoding='latin1',
                        allow_pickle=True)["data"]

    print("-> Evaluating")
    print("   Mono evaluation - using median scaling")

    errors = []
    ratios = []

    for i in range(pred_disps.shape[0]):

        gt_depth = gt_depths[i]
        gt_depth[gt_depth > 0] = (gt_depth[gt_depth > 0] - 1) / 256
        gt_depth[gt_depth > 0] = (0.209313 * 2262.52) / gt_depth[gt_depth > 0]
        gt_depth[gt_depth > MAX_DEPTH] = 0
        gt_height, gt_width = gt_depth.shape[:2]

        pred_disp = pred_disps[i]
        pred_disp = cv2.resize(pred_disp, (gt_width, gt_height))
        pred_depth = 1 / pred_disp

        mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH)

        crop = np.array([
            0.05 * gt_height, 0.80 * gt_height, 0.05 * gt_width,
            0.99 * gt_width
        ]).astype(np.int32)
        crop_mask = np.zeros(mask.shape)
        crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1
        mask = np.logical_and(mask, crop_mask)

        pred_depth = pred_depth[mask]
        gt_depth = gt_depth[mask]

        pred_depth *= opt.pred_depth_scale_factor
        if not opt.disable_median_scaling:
            ratio = np.median(gt_depth) / np.median(pred_depth)
            ratios.append(ratio)
            pred_depth *= ratio

        pred_depth[pred_depth < MIN_DEPTH] = MIN_DEPTH

        pred_depth[pred_depth > MAX_DEPTH] = MAX_DEPTH

        errors.append(compute_errors(gt_depth, pred_depth))

    if not opt.disable_median_scaling:
        ratios = np.array(ratios)
        med = np.median(ratios)
        print(" Scaling ratios | med: {:0.3f} | std: {:0.3f}".format(
            med, np.std(ratios / med)))

    mean_errors = np.array(errors).mean(0)

    print("\n  " +
          ("{:>8} | " * 7
           ).format("abs_rel", "sq_rel", "rmse", "rmse_log", "a1", "a2", "a3"))
    print(("&{: 8.3f}  " * 7).format(*mean_errors.tolist()) + "\\\\")
    print("\n-> Done!")