f_write = open(path + 'fddblist.txt', 'w') for item in file_list: if '/' in item: f_write.write(item) f_write.close() print('get fddb list done') if __name__ == '__main__': net = FaceBox() net.load_state_dict( torch.load('weight/faceboxes.pt', map_location=lambda storage, loc: storage)) if use_gpu: net.cuda() net.eval() data_encoder = DataEncoder() font = cv2.FONT_HERSHEY_SCRIPT_SIMPLEX # given video path, predict and show path = "/home/lxg/codedata/faceVideo/1208.mp4" # testVideo(path) # given image path, predict and show root_path = "/home/lxg/codedata/widerFace/WIDER_train/images/0--Parade/" picture = '0_Parade_marchingband_1_495.jpg' # testIm(root_path + picture) # given image path, predict and show
def train(): use_gpu = torch.cuda.is_available() file_root = os.path.dirname(os.path.abspath(__file__)) learning_rate = 0.001 num_epochs = 300 batch_size = 32 net = FaceBox() if use_gpu: net.cuda() print('load model...') net.load_state_dict(torch.load('weight/faceboxes_add_norm.pt')) criterion = MultiBoxLoss() #optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0005) optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=1e-4) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[198, 248], gamma=0.1) train_dataset = ListDataset(root=file_root, list_file='data/train_rewrite.txt', train=True, transform = [transforms.ToTensor()]) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) val_dataset = ListDataset(root=file_root, list_file='data/val_rewrite.txt', train=False, transform = [transforms.ToTensor()]) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4) print('the dataset has %d images' % (len(train_dataset))) print('the batch_size is %d' % (batch_size)) num_iter = 0 vis = visdom.Visdom() win = vis.line(Y=np.array([0]), X = np.array([0])) net.train() for epoch in range(num_epochs): scheduler.step() print('\n\nStarting epoch %d / %d' % (epoch + 1, num_epochs)) print('Learning Rate for this epoch: {}'.format(learning_rate)) total_loss = 0. net.train() for i,(images,loc_targets,conf_targets) in enumerate(train_loader): if use_gpu: images = images.cuda() loc_targets = loc_targets.cuda() conf_targets = conf_targets.cuda() loc_preds, conf_preds = net(images) loss = criterion(loc_preds,loc_targets,conf_preds,conf_targets) total_loss += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 10 == 0: print ('Epoch [{}/{}], Iter [{}/{}] Loss: {:.4f}, average_loss: {:.4f}'.format( epoch+1, num_epochs, i+1, len(train_loader), loss.item(), total_loss / (i+1))) #train_loss = total_loss /(len(train_dataset) / batch_size) vis.line(Y=np.array([total_loss / (i+1)]), X=np.array([num_iter]), win=win, name='train', update='append') num_iter += 1 # val_loss = 0.0 # net.eval() # for idx, (images, loc_targets,conf_targets) in enumerate(val_loader): # with torch.no_grad(): # if use_gpu: # images = images.cuda() # loc_targets = loc_targets.cuda() # conf_targets = conf_targets.cuda() # # loc_preds, conf_preds = net(images) # loss = criterion(loc_preds, loc_targets, conf_preds, conf_targets) # val_loss += loss.item() # val_loss /= len(val_dataset)/batch_size # vis.line(Y=np.array([val_loss]), X=np.array([epoch]), # win=win, # name='val', # update='append') # print('loss of val is {}'.format(val_loss)) if not os.path.exists('weight/'): os.mkdir('weight') print('saving model ...') torch.save(net.state_dict(),'weight/faceboxes_add_norm.pt')