コード例 #1
0
def get_layer_info(subject, journal_volume, edge_list):

    G = nx.Graph()
    G.add_weighted_edges_from(edge_list)

    PATH = "C:/Users/hexie/Documents/APS_result/" + str(
        journal_volume) + "/" + str(subject)

    try:
        os.mkdir(PATH)
        os.chdir(PATH)
    except:
        os.chdir(PATH)

    degree_centrality = nxc.degree_centrality(G)
    try:
        eigen_vector_centrality = nxc.eigenvector_centrality(G)
        np.save("eigen_vector_centrality.npy", eigen_vector_centrality)
    except:
        print("fail to converge within 100 iterations of power")

    closeness_centrality = nxc.closeness_centrality(G)
    betweeness_centrality = nxc.betweenness_centrality(G)

    np.save("degree_centrality.npy", degree_centrality)
    np.save("closeness_centrality.npy", closeness_centrality)
    np.save("betweeness_centrality.npy", betweeness_centrality)

    with open(str(subject) + str(journal_volume) + ".txt", 'w') as f:
        f.write('Number of Edges: ' + str(nx.number_of_edges(G)) + "\n")
        f.write('Number of Nodes: ' + str(nx.number_of_nodes(G)) + "\n")

    nx.draw(G)
    plt.savefig(str(subject) + str(journal_volume) + ".png")
    plt.clf()
コード例 #2
0
ファイル: graph.py プロジェクト: youngflyasd/GSSNN
def get_centrality(x, edge_index, batch):
    num_graphs = batch[-1] + 1
    N = x.shape[0]
    num_nodes = scatter_add(batch.new_ones(x.size(0)), batch, dim=0)
    cum_num_nodes = torch.cat(
        [num_nodes.new_zeros(1),
         num_nodes.cumsum(dim=0)[:-1]], dim=0)
    cum_num_nodes = torch.cat((cum_num_nodes, torch.tensor([N]).cuda()))
    row, col = edge_index
    c_centrality = []
    d_centrality = []
    for i in range(num_graphs):
        '''each graph'''
        s_id = cum_num_nodes[i]
        e_id = cum_num_nodes[i + 1]
        mask = torch.eq(row, s_id)
        for node in range(s_id + 1, e_id):
            mask = mask + torch.eq(row, node)
        g_row = torch.masked_select(row, mask) - s_id
        g_col = torch.masked_select(col, mask) - s_id

        G = to_networkx(torch.stack([g_row, g_col], dim=0))
        c_centrality = c_centrality + list(closeness_centrality(G).values())
        d_centrality = d_centrality + list(degree_centrality(G).values())

    c_centrality = torch.Tensor(c_centrality).cuda()
    d_centrality = torch.Tensor(d_centrality).cuda()
    return c_centrality, d_centrality
コード例 #3
0
def get_topological_features(G, nodes=None):
    N_ = len(G.nodes)
    if nodes is None:
        nodes = G.nodes
    # Degree centrality
    d_c = get_features(degree_centrality(G).values())
    print 'a'
    # Betweeness centrality
    b_c = get_features(betweenness_centrality(G).values())
    print 'b'

    # Close ness centrality
    c_c = get_features(closeness_centrality(G).values())
    print 'c'
    # Clustering
    c = get_features(clustering(G).values())
    print 'd'

    d = diameter(G)
    r = radius(G)

    s_p_average = []
    for s in shortest_path_length(G):
        dic = s[1]
        lengths = dic.values()
        s_p_average += [sum(lengths) / float(N_)]

    s_p_average = get_features(s_p_average)

    features = np.concatenate((d_c, b_c, c_c, c, s_p_average, [d], [r]),
                              axis=0)

    return features
コード例 #4
0
def get_centrality_labels(knn_graph_obj, perc_labeled, type='degree'):
        import random

        if type == 'degree':
                degree_centrality_knn = pd.DataFrame.from_dict(centrality.degree_centrality(knn_graph_obj), orient='index', columns=['value'])

                node_toget_labels = degree_centrality_knn.sort_values(by = 'value', ascending = False).index[0:int(perc_labeled*len(degree_centrality_knn.index))].tolist()
        elif type == 'closeness':
                closeness_centrality_knn = pd.DataFrame.from_dict(centrality.closeness_centrality(knn_graph_obj), orient='index', columns=['value'])

                node_toget_labels = closeness_centrality_knn.sort_values(by = 'value', ascending = False).index[0:int(perc_labeled*len(closeness_centrality_knn.index))].tolist()
        elif type == 'betweenness':
                betweenness_centrality_knn = pd.DataFrame.from_dict(centrality.betweenness_centrality(knn_graph_obj), orient='index', columns=['value'])

                node_toget_labels = betweenness_centrality_knn.sort_values(by = 'value', ascending = False).index[0:int(perc_labeled*len(betweenness_centrality_knn.index))].tolist()
        elif type == 'katz':
                katz_centrality_knn = pd.DataFrame.from_dict(centrality.katz_centrality(knn_graph_obj), orient='index', columns=['value'])

                node_toget_labels = katz_centrality_knn.sort_values(by = 'value', ascending = False).index[0:int(perc_labeled*len(katz_centrality_knn.index))].tolist()
        elif type == 'clustering':
                clustering_knn = pd.DataFrame.from_dict(clustering(knn_graph_obj), orient='index', columns=['value'])

                node_toget_labels = clustering_knn.sort_values(by = 'value', ascending = False).index[0:int(perc_labeled*len(clustering_knn.index))].tolist()
        else:
                indexes = list(knn_graph_obj.nodes)
                #print(indexes)
                node_toget_labels = random.sample(indexes, int(perc_labeled*len(indexes)))
                #print(node_toget_labels)

        return node_toget_labels
コード例 #5
0
def get_centrality_labels(knn_graph_obj, type='degree'):
    import random

    if type == 'degree':
        node_toget_labels = pd.DataFrame.from_dict(
            centrality.degree_centrality(knn_graph_obj),
            orient='index',
            columns=['value'])
    elif type == 'closeness':
        node_toget_labels = pd.DataFrame.from_dict(
            centrality.closeness_centrality(knn_graph_obj),
            orient='index',
            columns=['value'])
    elif type == 'betweenness':
        node_toget_labels = pd.DataFrame.from_dict(
            centrality.betweenness_centrality(knn_graph_obj),
            orient='index',
            columns=['value'])
    elif type == 'clustering':
        node_toget_labels = pd.DataFrame.from_dict(clustering(knn_graph_obj),
                                                   orient='index',
                                                   columns=['value'])
    else:
        node_toget_labels = list(knn_graph_obj.nodes)
        #print(node_toget_labels)

    return node_toget_labels
コード例 #6
0
 def extract_closeness_centrality(self):
     output = open(
         'output/' + self.set_ + '/' + self.set_ +
         '_closeness_centrality.csv', 'w')
     print('Calculating closeness centrality')
     nodes = centrality.closeness_centrality(self.G)
     for key in nodes:
         output.write(str(key) + ',' + str(nodes[key]) + '\n')
コード例 #7
0
ファイル: graph.py プロジェクト: youngflyasd/GSSNN
def get_closeness_centrality(dataset):
    centrality = []
    for data in dataset:
        '''each graph'''
        g_row, g_col = data.edge_index
        G = to_networkx(torch.stack([g_row, g_col], dim=0))
        c_centrality = list(closeness_centrality(G).values())
        centrality = centrality + c_centrality

    return centrality
コード例 #8
0
def get_centrality(def_centrality, toll_centrality, model, nodes_int):
    left_b_centr = centrality.betweenness_centrality(model.get_nx_graph())
    left_c_centr = centrality.closeness_centrality(model.get_nx_graph())
    for el in left_b_centr:
        node = model.get_node_by_id(el)
        if node in nodes_int:
            toll_centrality += left_c_centr[el] + left_b_centr[el]
        else:
            def_centrality += left_c_centr[el] + left_b_centr[el]
    return def_centrality, toll_centrality
コード例 #9
0
def compute_metrics(graph):

    G = json_graph.node_link_graph(graph, multigraph=False)
    degree_centrality = centrality.degree_centrality(G)
    closeness_centrality = centrality.closeness_centrality(G)
    betweenness_centrality = centrality.betweenness_centrality(G)
    page_rank = link_analysis.pagerank_alg.pagerank(G)
    max_clique = approximation.clique.max_clique(G)
    diameters = [distance_measures.diameter(g) for g in connected_component_subgraphs(G)]

    copy = dict()

    copy['id'] = graph['id']
    copy['name'] = graph['name']
    copy['graph'] = dict()
    copy['graph']['nodes'] = graph['nodes']
    copy['graph']['links'] = graph['links']
    copy['metrics'] = dict()

    # diameters
    copy['metrics']['diameter'] = dict()
    copy['metrics']['diameter']['all'] = diameters
    copy['metrics']['diameter']['max'] = max(diameters)
    copy['metrics']['diameter']['average'] = float(sum(diameters)) / float(len(diameters))

    # clique size
    copy['metrics']['maxClique'] = len(list(max_clique))

    # degree centrality
    copy['metrics']['degreeCentrality'] = dict()
    copy['metrics']['degreeCentrality']['byId'] = degree_centrality
    copy['metrics']['degreeCentrality']['max'] = sum(degree_centrality.values())
    copy['metrics']['degreeCentrality']['average'] = float(sum(degree_centrality.values())) / float(len(degree_centrality.values()))

    # closeness centrality
    copy['metrics']['closenessCentrality'] = dict()
    copy['metrics']['closenessCentrality']['byId'] = closeness_centrality
    copy['metrics']['closenessCentrality']['max'] = sum(closeness_centrality.values())
    copy['metrics']['closenessCentrality']['average'] = float(sum(closeness_centrality.values())) / float(len(closeness_centrality.values()))

    # degree centrality
    copy['metrics']['betweennessCentrality'] = dict()
    copy['metrics']['betweennessCentrality']['byId'] = betweenness_centrality
    copy['metrics']['betweennessCentrality']['max'] = sum(betweenness_centrality.values())
    copy['metrics']['betweennessCentrality']['average'] = float(sum(betweenness_centrality.values())) / float(len(betweenness_centrality.values()))

    # degree centrality
    copy['metrics']['pageRank'] = dict()
    copy['metrics']['pageRank']['byId'] = page_rank
    copy['metrics']['pageRank']['max'] = sum(page_rank.values())
    copy['metrics']['pageRank']['average'] = float(sum(page_rank.values())) / float(len(page_rank.values()))

    return copy
コード例 #10
0
def getClosenessCentrality(G, normalized):

    closeness_centrality = centrality.closeness_centrality(G)
    if not normalized:
        return closeness_centrality

    max_closeness = closeness_centrality[max(closeness_centrality,
                                             key=closeness_centrality.get)]

    normalize(closeness_centrality, max_closeness)
    print(closeness_centrality)
    color(G, closeness_centrality, 1, "olivedrab")

    return closeness_centrality
コード例 #11
0
def get_closeness_centrality(G, **kwargs):
    """Returns a dictionary of closeness centrality
    values for all nodes.
    """

    # Get the graph without glycine residues
    H = get_graph_without_glycine(G, kwargs["identifiers"],
                                  kwargs["residue_names"])

    # Calculate the closeness centrality values
    centrality_dict = \
        nxc.closeness_centrality(G = G,
                                distance = kwargs["weight"])

    # Return the finalized the dictionary of centrality values
    return finalize_dict(G, centrality_dict)
コード例 #12
0
def centralization_metrics(G, prefix=""):
    # NB: G can be either directed or undirected network
    # Metrics:
    # (betweennes / closeness / eigenvector / pagerank)

    # betweenness
    # => expensive
    # sample: k=min(10, len(G))
    betweenness = betweenness_centrality(G, normalized=True)
    betweenness_arr = np.fromiter(betweenness.values(), dtype=np.float)
    betweenness_mean = np.mean(np.max(betweenness_arr) - betweenness_arr)

    # closeness
    # => expensive
    # NB: normilizes by the CC size
    closeness = closeness_centrality(G, wf_improved=False)
    closeness_arr = np.fromiter(closeness.values(), dtype=np.float)
    closeness_mean = np.mean(np.max(closeness_arr) - closeness_arr)

    # eigenvector
    eigenvec_mean = None
    if len(G) > 2:
        try:
            eigenvec = eigenvector_centrality_numpy(G)
            eigenvec_arr = np.fromiter(eigenvec.values(), dtype=np.float)
            eigenvec_mean = np.mean(np.max(eigenvec_arr) - eigenvec_arr)
        except:
            eigenvec_mean = None

    # pagerank
    try:
        pagerank = pagerank_numpy(G)
        pagerank_arr = np.fromiter(pagerank.values(), dtype=np.float)
        pagerank_mean = np.mean(np.max(pagerank_arr) - pagerank_arr)
    except:
        pagerank_mean = None

    centralization = {
        f"cent{prefix}_betweenness_mean": betweenness_mean,
        f"cent{prefix}_closeness_mean": closeness_mean,
        f"cent{prefix}_eigenvec_mean": eigenvec_mean,
        f"cent{prefix}_pagerank_mean": pagerank_mean
    }

    return centralization
コード例 #13
0
def calc_node_based_centrality(edge_index, centrality='degree'):
    adj_list = edge_index.numpy().T
    G = nx.Graph()
    G.add_edges_from(adj_list)
    if centrality == 'degree':
        nodes_centrality = degree_centrality(G)
    elif centrality == 'eigenvector':
        nodes_centrality = eigenvector_centrality(G)
    elif centrality == "closeness":
        nodes_centrality = closeness_centrality(G)
    else:
        print(centrality, "is not defined")
        exit(1)

    edges_centrality = dict()
    for u, v in adj_list:
        edges_centrality[(u, v)] = nodes_centrality[u] * nodes_centrality[v]
    return edges_centrality
コード例 #14
0
def top_nodes(G, k=3):
    """
        Returns the top k nodes for various
        centrality measures: degree, 
        betweennes and closeness.
        
        Args:
            G (nx.Graph): graph for which the 
                top nodes must be determined.
            
            k (int): number of top nodes to return.
                if set to -ve, all the nodes will be
                returned.
            
        Returns:
            res_dict (dict): dictionary of each centrality
                measure with list of top k nodes in that 
                measure as values to the dictionary.
    """
    # number of nodes in the graph each node is connected to
    node_deg_dict = centrality.degree_centrality(G)
    # number of all pair shortest paths that pass through each node
    node_btw_dict = centrality.betweenness_centrality(G)
    # number of neighbours connected to each other for each node
    node_clo_dict = centrality.closeness_centrality(G)

    # sort by nodes by each centrality measure in decreasing order
    top_k_deg_nodes = sorted(node_deg_dict.items(), key=lambda x: -x[1])
    top_k_btw_nodes = sorted(node_btw_dict.items(), key=lambda x: -x[1])
    top_k_clo_nodes = sorted(node_clo_dict.items(), key=lambda x: -x[1])

    # pick the top k nodes
    res_dict = dict()
    if k > 0:
        res_dict["degree"] = list(zip(*top_k_deg_nodes[:k]))[0]
        res_dict["betweenness"] = list(zip(*top_k_btw_nodes[:k]))[0]
        res_dict["closeness"] = list(zip(*top_k_clo_nodes[:k]))[0]

    else:
        res_dict["degree"] = list(zip(*top_k_deg_nodes))[0]
        res_dict["betweenness"] = list(zip(*top_k_btw_nodes))[0]
        res_dict["closeness"] = list(zip(*top_k_clo_nodes))[0]

    return res_dict
コード例 #15
0
ファイル: analysis.py プロジェクト: likr/likr.github.io
def parse(name):
    print(name)
    pathbase = path.abspath(path.dirname(__file__))
    G = nx.Graph()
    data = json.load(open('{0}/{1}.json'.format(pathbase, name)))
    nodes = data['nodes']
    text = {i: node['text'] for i, node in enumerate(nodes)}
    weight = {i: float(node['weight']) for i, node in enumerate(nodes)}
    for i in range(len(nodes)):
        G.add_node(i)
    for link in data['links']:
        G.add_edge(link['source'], link['target'])

    degree = centrality.degree_centrality(G)
    closeness = centrality.closeness_centrality(G)
    betweenness = centrality.betweenness_centrality(G)
    #edge_betweenness = centrality.edge_betweenness_centrality(G)
    #current_flow_closeness = centrality.current_flow_closeness_centrality(G)
    #current_flow_betweenness =\
    #    centrality.current_flow_betweenness_centrality(G)
    try:
        eigenvector = centrality.eigenvector_centrality(G, max_iter=1000)
    except:
        eigenvector = {i: 0 for i in range(len(nodes))}
    katz = centrality.katz_centrality(G)

    obj = {'nodes': [], 'links': data['links']}
    for i in range(len(nodes)):
        obj['nodes'].append({
            'text': text[i],
            'weight': weight[i],
            'degree': degree[i],
            'closeness': closeness[i],
            'betweenness': betweenness[i],
            #'edge_betweenness': edge_betweenness[i],
            #'current_flow_closeness': current_flow_closeness[i],
            #'current_flow_betweenness': current_flow_betweenness[i],
            'eigenvector': eigenvector[i],
            'katz': katz[i],
        })
    json.dump(obj,
              open('{0}/../data/{1}.json'.format(pathbase, name), 'w'),
              sort_keys=True)
def calculate_metrics(network):
    '''
    Calcula las métricas más importantes sobre la red y las devuelve en forma de diccionario

    Parameters
    ----------
        network : nx.Graph
            Red de la que se quiere calcular las metricas 

    Returns
    -------
        metrics : dict
            Diccionario que almacena las métricas para la red pasada por parámetro
    '''

    # Incialización del diccionario que almacena las métricas
    metrics = {}

    # Obtenemos los nombres y afiliaciones de la red
    names = nx.get_node_attributes(network, 'name')
    affiliation = nx.get_node_attributes(network, 'affiliation')

    # Función para obtener el nombre en una tupla
    getprops = lambda author_tuple: (names[author_tuple[0]], affiliation[
        author_tuple[0]], author_tuple[1])

    # Número de nodos y aristas
    n = len(network.nodes.data())
    m = len(network.edges.data())

    metrics['n'] = n
    metrics['m'] = m

    # Tamaño total de la red (suma de pesos)
    metrics['size'] = network.size(weight='weight')

    # Grado promedio, densidad y grado máximo
    metrics['av_degree'] = round((2 * m) / n, 5)
    metrics['density'] = (2 * m) / (n * (n - 1))
    metrics['max_degree'] = getprops(
        max(dict(network.degree()).items(), key=lambda degree: degree[1]))[0]

    # Distribución de probabilidad del grado
    degree_distribution = [
        (i,
         len([author
              for (author, degree) in network.degree() if degree == i]) /
         len(network.nodes.data())) for i in range(
             max(dict(network.degree()).items(), key=lambda degree: degree[1])
             [1])
    ]
    metrics['max_degree_p'] = max(degree_distribution,
                                  key=lambda degree_p: degree_p[1])[0]

    # Coeficiente de clustering promedio
    metrics['clustering_coefficient'] = average_clustering(network)

    # Nodo con mayor centralidad promedio
    metrics['max_closeness_centrality'] = getprops(
        max(centrality.closeness_centrality(network).items(),
            key=lambda pair: pair[1]))[0]

    return metrics
コード例 #17
0
 def std_closeness_centrality(self, graph):
     close_centr = closeness_centrality(graph)
     return np.std(list(close_centr.values()))
コード例 #18
0
 def avg_closeness_centrality(self, graph):
     close_centr = closeness_centrality(graph)
     return np.average(list(close_centr.values()))
コード例 #19
0
    return G


def draw_graph(G):
    nx.draw(G, node_size=30)
    plt.show()


if __name__ == "__main__":
    print("Start parsing:")
    data = parse_group()
    G = create_graph(data)
    draw_graph(G)

    degree = pd.Series(nxa.degree_centrality(G)).idxmax()
    closeness = pd.Series(nxa.closeness_centrality(G)).idxmax()
    eigenvector = pd.Series(nxa.eigenvector_centrality(G)).idxmax()
    betweennes = pd.Series(nxa.betweenness_centrality(G)).idxmax()

    degree_user = api.users.get(user_ids=degree)[0]
    closeness_user = api.users.get(user_ids=closeness)[0]
    eigenvector_user = api.users.get(user_ids=eigenvector)[0]
    betweeness_user = api.users.get(user_ids=betweennes)[0]

    print("Most important user:"******"Degree centrality: id{degree} - {degree_user['first_name'] + ' ' + degree_user['last_name']}"
    )
    print(
        f"Closeness centrality: id{closeness} - {closeness_user['first_name'] + ' ' + closeness_user['last_name']}"
    )
コード例 #20
0
    g_dict[i] = i

c_list = []
for j in range(len(d)):
    for n in range(len(c)):
        if d[j] in c[n]:
            c_list.append(g_dict[n])

#中心性解析
#次数中心性
cent_values = degree_centrality(G).values()
cent_central = degree_centrality(G)
cent_keys = degree_centrality(G).keys()

#近接中心性
d_values = closeness_centrality(G).values()
d_central = closeness_centrality(G)
d_keys = closeness_centrality(G).keys()

#媒介中心性
bet_values = betweenness_centrality(G).values()
bet_central = betweenness_centrality(G)
bet_keys = betweenness_centrality(G).keys()

#sorted(d_dict.values())
d_values_list = list(d_values)
#print(d_values)
#print(d_keys)
#print(d_values_list)
a = 0
b = 0
コード例 #21
0
     G = read_dot(os.path.join("output", fname))
     nx.draw(G)
 except:
     print("cannot load graph")
     continue
 if G.number_of_nodes() == 0:
     print("Cannot read binary file")
     continue
 data = []
 data.append(fname)
 data.append(G.number_of_nodes())
 data.append(G.number_of_edges())
 data.append(density(G))
 deg_centrality = degree_centrality(G)
 data.extend(properties_of_array(deg_centrality))
 cln_centrality = closeness_centrality(G)
 data.extend(properties_of_array(cln_centrality))
 btn_centrality = betweenness_centrality(G)
 data.extend(properties_of_array(btn_centrality))
 st_path = shortest_path(G)
 deg = [len(val) for key, val in st_path.items()]
 d = np.array(deg)
 data.extend(
     [np.min(d),
      np.max(d),
      np.median(d),
      np.mean(d),
      np.std(d)])
 try:
     data.append(diameter(G.to_undirected()))
 except:
コード例 #22
0
def summarise_communities(relG):
    """
        Creates summaries for all clusters
        in a given graph with the following
        attributes:
        1. bridges - node with the highest betweeness
        2. members
        3. Closeness - how close the group (higher, closer)
        4. relation counts in the cluster

        Args:
            relG (nx.Graph): graph for which
                the summary must be created.

            Note: the edges in relG must have
            'relation' edge attribute referring
            to the relation type.

        Returns:
            summaries (dict): dictionary of clusters
                with the string summaries as values.
    """
    # get communities
    communities = list(enumerate(detect_communities(relG)))
    node_comm_dict = dict()
    for i, c in communities:
        for u in c:
            node_comm_dict[u] = i

    # get bridges: nodes in clusters in highest betweenness centrality
    node_btw_dict = centrality.betweenness_centrality(relG)
    comm_bridge_dict = {i: (None, -1) for i in range(len(communities))}
    for n, b in node_btw_dict.items():
        c = node_comm_dict[n]
        if b > comm_bridge_dict[c][1]:
            comm_bridge_dict[c] = (n, b)

    # get powers of clusters
    comm_graph_dict = {i: nx.Graph() for i, c in communities}
    for (u, v, r) in relG.edges.data('relation'):
        uc, vc = node_comm_dict[u], node_comm_dict[v]
        if uc == vc:
            comm_graph_dict[uc].add_edge(u, v, relation=r)

    # get average closeness centrality
    comm_avg_clo_dict = dict()
    for i, G in comm_graph_dict.items():
        node_clo_dict = centrality.closeness_centrality(G)
        s, n = sum(list(node_clo_dict.values())), len(node_clo_dict)
        comm_avg_clo_dict[i] = s / n

    # get relation counts for each cluster
    rel_count_comm_dict = dict()
    for i, c in comm_graph_dict.items():
        u, v, r = list(zip(*c.edges.data('relation')))
        rels, counts = np.unique(r, return_counts=True)
        rel_count_comm_dict[i] = list(zip(rels, counts))

    # create string summary for each cluster
    summaries = dict()
    for i, c in communities:
        summaries[i] = f"Bridge: {comm_bridge_dict[i][0]}\n"
        members = ", ".join([str(x) for x in c])
        summaries[i] += f"Members: {members}\n"
        closeness = np.around(comm_avg_clo_dict[i], decimals=4)
        summaries[i] += f"Closeness: {closeness}\n"
        rel_counts = [
            '\'' + r + '\'- ' + str(c) for r, c in rel_count_comm_dict[i]
        ]
        summaries[i] += "Relations:\n" + "\n".join(rel_counts)

    return summaries
コード例 #23
0
ファイル: writeFns.py プロジェクト: KirstieJane/maybrain
    def closenesscentrality(self, brain,outfilebase = "brain", append=True):
        """ Calculates node and hub closeness centralities. For hub centralities there are two files, one with the values in and another
        with the hub identities in corresponding rows.
        """
        ## closeness centrality
        # node centrality
        outfile = outfilebase+'_closeness_centralities_nodes'
        boolVal = self.fileCheck(outfile, append)        
        
        # open file and write headers if necessary
        if append and boolVal:
            f= open(outfile,"ab")
            headers = None            
        else:
            f = open(outfile,"wb")
            headers = dict((n,n) for n in brain.G.nodes())
                        
        writeObj = DictWriter(f,fieldnames = brain.G.nodes())            
        if headers:
            writeObj.writerow(headers)

        # make calculations            
        centralities = centrality.closeness_centrality(brain.G)  # calculate centralities for largest connected component
        nodecentralitiestowrite = dict((n,None) for n in brain.G.nodes())   # create a blank dictionary of all nodes in the graph
        for node in centralities:
            nodecentralitiestowrite[node] = centralities[node]    # populate the blank dictionary with centrality values
        writeObj.writerow(nodecentralitiestowrite)                    # write out centrality values
        f.close()
        
        # hub centrality
        outfile = outfilebase+'_closeness_centralities_hubs'
        hubidfile = outfilebase+'_closeness_centralities_hubs_ids'
        
        OFbool = self.fileCheck(outfile, append)
        self.fileCheck(hubidfile, append)        
        
        if append and OFbool:
            f = open(outfile,"ab")
            g = open(hubidfile,"ab")
            
        else:
            f= open(outfile,"wb")
            g = open(hubidfile,"wb")
            
        centhubs = [hub for hub in brain.hubs if hub in brain.G] # hubs within largest connected graph component
    
        # write hub identifies to file    
        writeObj = DictWriter(f,fieldnames = brain.hubs)
        hubwriter = DictWriter(g,fieldnames = brain.hubs)
        
        headers = dict((n,n) for n in brain.hubs)         # dictionary of all hubs in network to write
        hubwriter.writerow(headers)
        
        hubcentralitieistowrite = dict((n,None) for n in brain.hubs) # empty dictionary to populate with centralities data
    
        for hub in centhubs:
            hubcentralitieistowrite[hub] = nodecentralitiestowrite[hub]
            
        writeObj.writerow(hubcentralitieistowrite)
        f.close()
        g.close()
コード例 #24
0
ファイル: main_old.py プロジェクト: shaginhekvs/ada_course
class Create_network():

    centrality_metrics = {
        "Degree Centrality":
        lambda n, weight='_': centrality_algorithms.degree_centrality(n),
        "Closeness Centrality":
        lambda n, weight='_': centrality_algorithms.closeness_centrality(n),
        "Betweenness Centrality":
        centrality_algorithms.betweenness_centrality
    }

    community_colors = ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628', \
                            '#b3cde3','#ccebc5','#decbe4','#fed9a6','#ffffcc','#e5d8bd','#fddaec',\
                            '#1b9e77','#d95f02','#7570b3','#e7298a','#66a61e','#e6ab02','#a6761d','#666666']

    def __init__(self,
                 network_file,
                 layout_file,
                 count_path,
                 title,
                 width=800,
                 thresh_val=8):
        self.network_file = network_file
        self.layout_file = layout_file
        self.count_path = count_path
        self.network_tuple = self.load_network(network_file, layout_file)
        self.nodes_sources_tab1 = self.column_source(self.network_tuple[1],
                                                     count_path)
        self.network_plots_n_circle_tab1 = self.create_network_plot(
            self.nodes_sources_tab1, title, width)
        self.network_lines_tab1 = self.add_lines(
            self.network_tuple, self.network_plots_n_circle_tab1[0])
        self.get_centrality_n_community(self.network_tuple[0],
                                        self.nodes_sources_tab1,
                                        self.network_plots_n_circle_tab1[1])
        self.drop_button_tab1 = Button(label="Remove Node",
                                       button_type="warning")
        self.drop_button_tab1.on_click(self.remove_node_tab1)
        self.remove_unattached_button = Button(label="Remove unattached nodes",
                                               button_type="success")
        self.remove_unattached_button.on_click(self.remove_unbound_nodes)
        self.update_props_button = Button(label="Update Properties",
                                          button_type="warning")
        self.update_props_button.on_click(self.update_properties)
        self.update_layout_button = Button(label="Update Layout",
                                           button_type="success")
        self.update_layout_button.on_click(self.update_layout)
        self.select_centrality = Select(title="Centrality Metric:",
                                        value="Degree Centrality",
                                        options=list(
                                            self.centrality_metrics.keys()))
        self.select_centrality.on_change('value', self.update_centrality)
        self.slider = Slider(start=0,
                             end=10,
                             value=0,
                             step=1,
                             title="Threshold %")
        self.slider.on_change('value', self.filter_threshold)
        self.slider.value = thresh_val
        #self.filter_threshold('',0,3)

    def reinit(self, network_file, layout_file, count_path, title):
        lines_source = self.network_lines_tab1
        nodes_source = self.nodes_sources_tab1
        self.network_file = network_file
        self.layout_file = layout_file
        self.count_path = count_path
        self.network_plots_n_circle_tab1[0].title.text = title
        self.network_tuple = self.load_network(network_file, layout_file)
        network, layout = self.network_tuple
        print('loaded new network')
        nodes, nodes_coordinates = zip(*sorted(layout.items()))
        count_dict = dict(pickle.load(open(self.count_path, 'rb')))
        nodes_xs, nodes_ys = list(zip(*nodes_coordinates))
        node_occurances = [count_dict[node] for node in nodes]
        nodes_source.data['x'] = nodes_xs
        nodes_source.data['y'] = nodes_ys
        nodes_source.data['name'] = nodes
        nodes_source.data['counts'] = node_occurances
        lines_source.data = self.get_edges_specs(network, layout)
        self.update_properties()
        self.slider.value = 8
        self.filter_threshold('', 0, 8)

    def load_network(self, network_file, layout_file):
        network = pickle.load(open(network_file, 'rb'))
        layout = pickle.load(open(layout_file, 'rb'))
        return (network, layout)

    def column_source(self, layout, count_path):
        nodes, nodes_coordinates = zip(*sorted(layout.items()))
        count_dict = dict(pickle.load(open(count_path, 'rb')))
        nodes_xs, nodes_ys = list(zip(*nodes_coordinates))
        node_occurances = [count_dict[node] for node in nodes]
        nodes_source = ColumnDataSource(
            dict(x=nodes_xs, y=nodes_ys, name=nodes, counts=node_occurances))
        return nodes_source

    def create_network_plot(self, nodes_source, title='', width=800):
        plot = figure(plot_width=width,
                      plot_height=700,
                      tools=['tap', 'box_zoom', 'reset', 'pan', 'wheel_zoom'],
                      title=title)
        plot.title.text_font = "helvica"
        plot.title.text_font_style = "bold"
        plot.title.text_font_size = "20px"
        plot.background_fill_color = "beige"
        plot.background_fill_alpha = 0.2
        g1 = Circle(x='x', y='y', size=2, fill_color='blue')
        g1_r = plot.add_glyph(source_or_glyph=nodes_source, glyph=g1)
        g1_hover = HoverTool(renderers=[g1_r],
                             tooltips=[('name', '@name'),
                                       ('count', '@counts')])
        glyph_text = Text(x="x",
                          y="y",
                          text="name",
                          text_color="#ff4a4a",
                          text_font_size='6pt',
                          text_alpha=0.7)

        plot.add_glyph(nodes_source, glyph_text)
        plot.add_tools(g1_hover)
        plot.grid.grid_line_color = None
        plot.axis.visible = False
        return plot, g1_r, glyph_text

    def get_edges_specs(self, _network, _layout):
        d = dict(xs=[], ys=[], alphas=[])
        weights = [d['weight'] for u, v, d in _network.edges(data=True)]
        max_weight = max(weights)
        calc_alpha = lambda h: 0.1 + 0.6 * (h / max_weight)

        for u, v, data in _network.edges(data=True):
            d['xs'].append([_layout[u][0], _layout[v][0]])
            d['ys'].append([_layout[u][1], _layout[v][1]])
            d['alphas'].append(calc_alpha(data['weight']))
        return d

    def add_lines(self, network_tuple, plot):
        lines_source = ColumnDataSource(self.get_edges_specs(*network_tuple))
        r_lines = plot.multi_line('xs',
                                  'ys',
                                  line_width=2,
                                  alpha='alphas',
                                  color='navy',
                                  source=lines_source)
        return lines_source

    def get_centrality_n_community(self, network, nodes_source, g1_r):
        community_colors = self.community_colors
        centrality = networkx.algorithms.centrality.degree_centrality(network)
        # first element, are nodes again
        _, nodes_centrality = zip(*sorted(centrality.items()))
        nodes_source.add(
            [7 + 10 * t / max(nodes_centrality) for t in nodes_centrality],
            'centrality')

        partition = community.best_partition(network)
        p_, nodes_community = zip(*sorted(partition.items()))
        nodes_source.add(nodes_community, 'community')

        nodes_source.add([community_colors[t % len(community_colors)]\
                      for t in nodes_community], 'community_color')
        g1_r.glyph.size = 'centrality'
        g1_r.glyph.fill_color = 'community_color'

    def remove_node_1_net(self, nodes_source, lines_source, network, layout):
        print('line 92')
        print(type(nodes_source.selected['1d']['indices']))
        print(len(nodes_source.selected['1d']['indices']))
        if (nodes_source.selected['1d']['indices']):
            idx = nodes_source.selected['1d']['indices'][0]
        else:
            return
        # update networkX network object
        node = nodes_source.data['name'][idx]
        network.remove_node(node)
        print('line 97')
        # update layout
        layout.pop(node)

        # update nodes ColumnDataSource
        new_source_data = dict()
        for col in nodes_source.column_names:
            print('line 104')
            new_source_data[col] = [
                e for i, e in enumerate(nodes_source.data[col]) if i != idx
            ]
        nodes_source.data = new_source_data

        # update lines ColumnDataSource
        lines_source.data = self.get_edges_specs(network, layout)

    def remove_node_tab1(self):
        self.remove_node_1_net(self.nodes_sources_tab1,
                               self.network_lines_tab1, *self.network_tuple)

    def remove_unbound_nodes(self):
        network, layout = self.network_tuple
        lines_source = self.network_lines_tab1
        nodes_source = self.nodes_sources_tab1
        unbound_nodes = []
        for node in network.nodes():
            if not network.edges(node):
                unbound_nodes.append(node)
        for node in unbound_nodes:
            network.remove_node(node)
            layout.pop(node)

        nodes, nodes_coordinates = zip(*sorted(layout.items()))
        count_dict = dict(pickle.load(open(self.count_path, 'rb')))
        nodes_xs, nodes_ys = list(zip(*nodes_coordinates))
        node_occurances = [count_dict[node] for node in nodes]
        nodes_source.data['x'] = nodes_xs
        nodes_source.data['y'] = nodes_ys
        nodes_source.data['name'] = nodes
        nodes_source.data['counts'] = node_occurances
        self.update_properties()
        lines_source.data = self.get_edges_specs(network, layout)

    def update_properties(self):
        community_colors = self.community_colors
        network, layout = self.network_tuple
        nodes_source = self.nodes_sources_tab1
        partition = community.best_partition(network)
        p_, nodes_community = zip(*sorted(partition.items()))

        nodes_source.data['community'] = nodes_community
        nodes_source.data['community_color'] = [
            community_colors[t % len(community_colors)]
            for t in nodes_community
        ]
        centrality = self.centrality_metrics[self.select_centrality.value](
            network, weight='weight')
        _, nodes_centrality = zip(*sorted(centrality.items()))
        nodes_source.data['centrality'] = [
            7 + 10 * t / max(nodes_centrality) for t in nodes_centrality
        ]

    def update_centrality(self, attrname, old, new):
        network, _ = self.network_tuple
        nodes_source = self.nodes_sources_tab1
        centrality = self.centrality_metrics[self.select_centrality.value](
            network, weight='weight')
        _, nodes_centrality = zip(*sorted(centrality.items()))
        nodes_source.data['centrality'] = [
            7 + 10 * t / max(nodes_centrality) for t in nodes_centrality
        ]

    def update_layout(self):
        network, layout = self.network_tuple
        lines_source = self.network_lines_tab1
        nodes_source = self.nodes_sources_tab1
        new_layout = networkx.spring_layout(network,
                                            k=1.1 /
                                            sqrt(network.number_of_nodes()),
                                            iterations=100)
        layout = new_layout
        nodes, nodes_coordinates = zip(*sorted(layout.items()))
        nodes_xs, nodes_ys = list(zip(*nodes_coordinates))
        nodes_source.data['x'] = nodes_xs
        nodes_source.data['y'] = nodes_ys
        lines_source.data = self.get_edges_specs(network, layout)

    def filter_threshold(self, attrname, old, new):
        network, layout = self.network_tuple
        if (old == new):
            return
        if (old > new):
            self.network_tuple = self.load_network(self.network_file,
                                                   self.layout_file)
            network, layout = self.network_tuple
        weights = [d['weight'] for u, v, d in network.edges(data=True)]
        max_weight = max(weights)
        min_weight = min(weights)
        threshold = (new * (max_weight - min_weight) / 100.0)
        to_remove_list = []
        sources_in = set()
        for (u, v, d) in network.edges(data='weight'):
            if (d < threshold):
                if (((u, v, d) in sources_in) or ((v, u, d) in sources_in)):
                    continue
                to_remove_list.append((u, v))
                sources_in.add((u, v, d))
        network.remove_edges_from(to_remove_list)
        self.remove_unbound_nodes()
        font_size = 6 + new
        font_size = min(10, font_size)
        self.network_plots_n_circle_tab1[2].text_font_size = '{}pt'.format(
            font_size)
        self.update_layout()

    def return_view(self):
        return column(self.network_plots_n_circle_tab1[0],row(widgetbox(self.slider,self.select_centrality),\
                      widgetbox(self.drop_button_tab1,self.remove_unattached_button),\
                      widgetbox(self.update_props_button, self.update_layout_button,)))
コード例 #25
0
"""
GraVE Documentation
-------------------

"""
import networkx as nx
from networkx.algorithms.centrality import closeness_centrality
import matplotlib.pyplot as plt

from grave import plot_network, use_attributes

toy_network = nx.barbell_graph(10, 14)
toy_centrality = closeness_centrality(toy_network)
max_centrality = max(toy_centrality.values())

for u, v, edge_attributes in toy_network.edges.data():
    c = (toy_centrality[u] + toy_centrality[v]) / 2
    color_idx = (c / max_centrality)
    cmap = plt.get_cmap()
    edge_attributes['color'] = cmap(color_idx)
    edge_attributes['width'] = 2

for node, node_attributes in toy_network.nodes.data():
    node_attributes['size'] = (1 - (toy_centrality[node] / max_centrality) +
                               .1) * 100


def edge_style(edge_attributes):
    return {'linewidth': edge_attributes.get('weight', 1)}

コード例 #26
0
def calculate_all_centralities(data):
    """
        Calculates all four centralities metrics for the input graph
        Paramaters:
            data: a json object which represents the graph.
            This json is manipulated and the necessary metrics are added to it.
    """
    G = json_graph.node_link_graph(
        data)  #loads the data to a NetworkX graph object
    #Calculates three of the metrics
    degree = centrality.degree_centrality(G)
    closeness = centrality.closeness_centrality(G)
    betweeness = centrality.betweenness_centrality(G)
    eigenvector_fail = False
    try:  #Eigenvector centrality can fail to converge.
        eigenvector = centrality.eigenvector_centrality(DiGraph(G),
                                                        max_iter=100000)
    except NetworkXError:  #Eigenvector values will be None if calculation fails.
        eigenvector = []
        eigenvector_fail = True
        print "Max iterations exceeded"
    degree_max = -1.0
    closeness_max = -1.0
    betweeness_max = -1.0
    eigenvector_max = -1.0
    for author in data['nodes']:  #Adds the unnormalized values in the json
        i = author['id']
        author['degreeCentralityUnnormalized'] = degree[i]
        author['closenessCentralityUnnormalized'] = closeness[i]
        author['betweennessCentralityUnnormalized'] = betweeness[i]
        author['eigenvectorCentralityUnnormalized'] = eigenvector[
            i] if not eigenvector_fail else 1.0

    #Finds the highest values for each centrality type
    for i in degree:
        if degree[i] > degree_max:
            degree_max = degree[i]
    for i in closeness:
        if closeness[i] > closeness_max:
            closeness_max = closeness[i]
    for i in betweeness:
        if betweeness[i] > betweeness_max:
            betweeness_max = betweeness[i]
    for i in eigenvector:
        if eigenvector[i] > eigenvector_max:
            eigenvector_max = eigenvector[i]

    #Normalizes the values
    for i in degree:
        if degree[i] != 0:
            degree[i] = degree[i] / degree_max
    for i in closeness:
        if closeness[i] != 0:
            closeness[i] = closeness[i] / closeness_max
    for i in betweeness:
        if betweeness[i] != 0:
            betweeness[i] = betweeness[i] / betweeness_max
    for i in eigenvector:
        if eigenvector[i] != 0:
            eigenvector[i] = eigenvector[i] / eigenvector_max

    #Adds the normalized values to the json
    for author in data['nodes']:
        i = author['id']
        author['degreeCentrality'] = degree[i]
        author['closenessCentrality'] = closeness[i]
        author['betweennessCentrality'] = betweeness[i]
        author['eigenvectorCentrality'] = eigenvector[
            i] if not eigenvector_fail else 1.0
    return data
コード例 #27
0
def analyze(directed_df, undirected_df, auxiliary_df):
    directed_df = directed_df.copy(deep=True)
    undirected_df = undirected_df.copy(deep=True)

    directed_df = directed_df.rename(mapper=lambda name: name.lower(),
                                     axis='columns')
    undirected_df = undirected_df.rename(mapper=lambda name: name.lower(),
                                         axis='columns')

    G = nx.from_pandas_edgelist(directed_df,
                                edge_attr=['weight', 'change'],
                                create_using=nx.DiGraph)
    G_undirected = nx.from_pandas_edgelist(undirected_df,
                                           edge_attr=['weight', 'change'])

    alpha_coef = 0.9

    alpha = alpha_coef / max(nx.adjacency_spectrum(G).real)
    alpha_undirected = alpha_coef / max(
        nx.adjacency_spectrum(G_undirected).real)

    centralities = {
        'out_degree':
        weighted_degree_centrality(G),
        'in_degree':
        weighted_degree_centrality(G.reverse()),
        'undirected_degree':
        weighted_degree_centrality(G_undirected),
        'out_eigenvector':
        centrality.eigenvector_centrality(G, weight='weight'),
        'in_eigenvector':
        centrality.eigenvector_centrality(G.reverse(), weight='weight'),
        'undirected_eigenvector':
        centrality.eigenvector_centrality(G_undirected, weight='weight'),
        'out_closeness':
        centrality.closeness_centrality(G, distance='weight'),
        'in_closeness':
        centrality.closeness_centrality(G.reverse(), distance='weight'),
        'undirected_closeness':
        centrality.closeness_centrality(G_undirected, distance='weight'),
        'out_betweenness':
        centrality.betweenness_centrality(G, weight='weight'),
        'in_betweenness':
        centrality.betweenness_centrality(G.reverse(), weight='weight'),
        'undirected_betweenness':
        centrality.betweenness_centrality(G_undirected, weight='weight'),
        'out_katz':
        centrality.katz_centrality(G, alpha=alpha, weight='weight'),
        'in_katz':
        centrality.katz_centrality(G.reverse(), alpha=alpha, weight='weight'),
        'undirected_katz':
        centrality.katz_centrality(G_undirected, alpha=alpha, weight='weight')
    }

    for centrality_type in centralities.keys():
        directed_df[centrality_type] = np.NaN

    augmented_auxiliary_df = auxiliary_df.copy(deep=True)

    for key, row in augmented_auxiliary_df.iterrows():
        node = row['docid']
        for centrality_type, values in centralities.items():
            if node in values:
                augmented_auxiliary_df.at[key, centrality_type] = values[node]

    print(augmented_auxiliary_df)
    return augmented_auxiliary_df
コード例 #28
0
def run_GT_calcs(G, just_data, Do_kdist, Do_dia, Do_BCdist, Do_CCdist, Do_ECdist, Do_GD, Do_Eff, \
                               Do_clust, Do_ANC, Do_Ast, Do_WI, multigraph):

    # getting nodes and edges and defining variables for later use
    klist = [0]
    Tlist = [0]
    BCdist = [0]
    CCdist = [0]
    ECdist = [0]
    if multigraph:
        Do_BCdist = 0
        Do_ECdist = 0
        Do_clust = 0

    data_dict = {"x": [], "y": []}

    nnum = int(nx.number_of_nodes(G))
    enum = int(nx.number_of_edges(G))

    if Do_ANC | Do_dia:
        connected_graph = nx.is_connected(G)

    # making a dictionary for the parameters and results
    just_data.append(nnum)
    data_dict["x"].append("Number of nodes")
    data_dict["y"].append(nnum)
    just_data.append(enum)
    data_dict["x"].append("Number of edges")
    data_dict["y"].append(enum)
    multi_image_settings.progress(35)

    # calculating parameters as requested

    # creating degree histogram
    if (Do_kdist == 1):
        klist1 = nx.degree(G)
        ksum = 0
        klist = np.zeros(len(klist1))
        for j in range(len(klist1)):
            ksum = ksum + klist1[j]
            klist[j] = klist1[j]
        k = ksum / len(klist1)
        k = round(k, 5)
        just_data.append(k)
        data_dict["x"].append("Average degree")
        data_dict["y"].append(k)

    multi_image_settings.progress(40)

    # calculating network diameter
    if (Do_dia == 1):
        if connected_graph:
            dia = int(diameter(G))
        else:
            dia = 'NaN'
        just_data.append(dia)
        data_dict["x"].append("Network Diameter")
        data_dict["y"].append(dia)

    multi_image_settings.progress(45)

    # calculating graph density
    if (Do_GD == 1):
        GD = nx.density(G)
        GD = round(GD, 5)
        just_data.append(GD)
        data_dict["x"].append("Graph density")
        data_dict["y"].append(GD)

    multi_image_settings.progress(50)

    # calculating global efficiency
    if (Do_Eff == 1):
        Eff = global_efficiency(G)
        Eff = round(Eff, 5)
        just_data.append(Eff)
        data_dict["x"].append("Global Efficiency")
        data_dict["y"].append(Eff)

    multi_image_settings.progress(55)

    if (Do_WI == 1):
        WI = wiener_index(G)
        WI = round(WI, 1)
        just_data.append(WI)
        data_dict["x"].append("Wiener Index")
        data_dict["y"].append(WI)

    multi_image_settings.progress(60)

    # calculating clustering coefficients
    if (Do_clust == 1):
        Tlist1 = clustering(G)
        Tlist = np.zeros(len(Tlist1))
        for j in range(len(Tlist1)):
            Tlist[j] = Tlist1[j]
        clust = average_clustering(G)
        clust = round(clust, 5)
        just_data.append(clust)
        data_dict["x"].append("Average clustering coefficient")
        data_dict["y"].append(clust)

    # calculating average nodal connectivity
    if (Do_ANC == 1):
        if connected_graph:
            ANC = average_node_connectivity(G)
            ANC = round(ANC, 5)
        else:
            ANC = 'NaN'
        just_data.append(ANC)
        data_dict["x"].append("Average nodal connectivity")
        data_dict["y"].append(ANC)

    multi_image_settings.progress(65)

    # calculating assortativity coefficient
    if (Do_Ast == 1):
        Ast = degree_assortativity_coefficient(G)
        Ast = round(Ast, 5)
        just_data.append(Ast)
        data_dict["x"].append("Assortativity Coefficient")
        data_dict["y"].append(Ast)

    multi_image_settings.progress(70)

    # calculating betweenness centrality histogram
    if (Do_BCdist == 1):
        BCdist1 = betweenness_centrality(G)
        Bsum = 0
        BCdist = np.zeros(len(BCdist1))
        for j in range(len(BCdist1)):
            Bsum += BCdist1[j]
            BCdist[j] = BCdist1[j]
        Bcent = Bsum / len(BCdist1)
        Bcent = round(Bcent, 5)
        just_data.append(Bcent)
        data_dict["x"].append("Average betweenness centrality")
        data_dict["y"].append(Bcent)
    multi_image_settings.progress(75)

    # calculating closeness centrality
    if (Do_CCdist == 1):
        CCdist1 = closeness_centrality(G)
        Csum = 0
        CCdist = np.zeros(len(CCdist1))
        for j in range(len(CCdist1)):
            Csum += CCdist1[j]
            CCdist[j] = CCdist1[j]
        Ccent = Csum / len(CCdist1)
        Ccent = round(Ccent, 5)
        just_data.append(Ccent)
        data_dict["x"].append("Average closeness centrality")
        data_dict["y"].append(Ccent)

        multi_image_settings.progress(80)

        # calculating eigenvector centrality
        if (Do_ECdist == 1):
            try:
                ECdist1 = eigenvector_centrality(G, max_iter=100)
            except:
                ECdist1 = eigenvector_centrality(G, max_iter=10000)
            Esum = 0
            ECdist = np.zeros(len(ECdist1))
            for j in range(len(ECdist1)):
                Esum += ECdist1[j]
                ECdist[j] = ECdist1[j]
            Ecent = Esum / len(ECdist1)
            Ecent = round(Ccent, 5)
            just_data.append(Ecent)
            data_dict["x"].append("Average eigenvector centrality")
            data_dict["y"].append(Ecent)

    data = pd.DataFrame(data_dict)

    return data, just_data, klist, Tlist, BCdist, CCdist, ECdist
コード例 #29
0
    def compute_features(self):
        # Degree centrality
        degree_centrality = lambda graph: list(
            centrality.degree_centrality(graph).values())
        self.add_feature(
            "degree centrality",
            degree_centrality,
            "The degree centrality distribution",
            InterpretabilityScore(5),
            statistics="centrality",
        )

        # Betweenness Centrality
        betweenness_centrality = lambda graph: list(
            centrality.betweenness_centrality(graph).values())
        self.add_feature(
            "betweenness centrality",
            betweenness_centrality,
            "Betweenness centrality of a node v is the sum of the fraction of \
            all-pairs shortest paths that pass through v",
            InterpretabilityScore(5),
            statistics="centrality",
        )

        # Closeness centrality
        closeness_centrality = lambda graph: list(
            centrality.closeness_centrality(graph).values())
        self.add_feature(
            "closeness centrality",
            closeness_centrality,
            "Closeness is the reciprocal of the average shortest path distance",
            InterpretabilityScore(5),
            statistics="centrality",
        )

        # Edge betweenness centrality
        def edge_betweenness_centrality(graph):
            if graph.edges:
                return list(
                    centrality.edge_betweenness_centrality(graph).values())
            return [np.nan]

        self.add_feature(
            "edge betweenness centrality",
            edge_betweenness_centrality,
            "Betweenness centrality of an edge e is the sum of the fraction of \
            all-pairs shortest paths that pass through e",
            InterpretabilityScore(4),
            statistics="centrality",
        )

        # Harmonic centrality
        harmonic_centrality = lambda graph: list(
            centrality.harmonic_centrality(graph).values())
        self.add_feature(
            "harmonic centrality",
            harmonic_centrality,
            "Harmonic centrality of a node u is the sum of the reciprocal \
            of the shortest path distances from all other nodes to u",
            InterpretabilityScore(4),
            statistics="centrality",
        )

        # Subgraph centrality
        subgraph_centrality = lambda graph: list(
            centrality.subgraph_centrality(graph).values())
        self.add_feature(
            "subgraph centrality",
            subgraph_centrality,
            "The subgraph centrality for a node is the sum of weighted closed walks \
            of all lengths starting and ending at that node.",
            InterpretabilityScore(3),
            statistics="centrality",
        )

        # Second order centrality
        second_order_centrality = lambda graph: list(
            centrality.second_order_centrality(utils.ensure_connected(graph)).
            values())

        self.add_feature(
            "second order centrality",
            second_order_centrality,
            "The second order centrality of a given node is the standard deviation \
            of the return times to that node of a perpetual random walk on G",
            InterpretabilityScore(4),
            statistics="centrality",
        )

        # Eigenvector centrality
        eigenvector_centrality = lambda graph: list(
            centrality.eigenvector_centrality_numpy(
                utils.ensure_connected(graph)).values())
        self.add_feature(
            "eigenvector centrality",
            eigenvector_centrality,
            "Eigenvector centrality computes the centrality for a node based \
            on the centrality of its neighbors",
            InterpretabilityScore(4),
            statistics="centrality",
        )

        # Katz centrality
        katz_centrality = lambda graph: list(
            centrality.katz_centrality_numpy(utils.ensure_connected(graph)).
            values())
        self.add_feature(
            "katz centrality",
            katz_centrality,
            "Generalisation of eigenvector centrality - Katz centrality computes the \
            centrality for a node based on the centrality of its neighbors",
            InterpretabilityScore(4),
            statistics="centrality",
        )

        # Page Rank
        pagerank = lambda graph: list(nx.pagerank_numpy(graph).values())
        self.add_feature(
            "pagerank",
            pagerank,
            "The pagerank computes a ranking of the nodes in the graph based on \
            the structure of the incoming links. ",
            InterpretabilityScore(4),
            statistics="centrality",
        )
コード例 #30
0
corpo_pairs_list = open('./data/corpo_pairs_res.txt').readlines()

G = nx.Graph()
name_index_list = {}
index = 0
for _pair in corpo_pairs_list:
    _, pair_a, _, pair_b, _ = _pair.split(',')
    if pair_a not in name_index_list:
        name_index_list[pair_a] = str(index)
        index += 1
    if pair_b not in name_index_list:
        name_index_list[pair_b] = str(index)
        index += 1
    # print(pair_a + ',' + pair_b)
    G.add_edge(pair_a, pair_b)
# nx.draw(G)
# plt.savefig("path.png")
from networkx.algorithms.centrality import degree_centrality, closeness_centrality,betweenness_centrality,communicability_betweenness_centrality
degree_res = degree_centrality(G)
closeness_res = closeness_centrality(G)
betweenness_res = communicability_betweenness_centrality(G)


centrality_out = open('./data/centrality.txt', 'w')
centrality_out.write('pattern,degree,closeness,betweenness')
for key, value in degree_res.items():
    centrality_out.write('\n' + key + '\t %.2f \t %.2f \t %.2f'%(value,closeness_res[key],betweenness_res[key]))
centrality_out.close()
print(degree_res)
print(closeness_res)
print(betweenness_res)
コード例 #31
0
ファイル: bokehx_app.py プロジェクト: blue-yonder/documents
    p_, nodes_community = zip(*sorted(partition.items()))
    nodes_source.data['community'] = nodes_community
    nodes_source.data['community_color'] = [community_colors[t % len(community_colors)]
                                            for t in nodes_community]
    centrality = centrality_metrics[select_centrality.value](network, weight='weight')
    _, nodes_centrality = zip(*sorted(centrality.items()))
    nodes_source.data['centrality'] = [7 + 10 * t / max(nodes_centrality) for t in nodes_centrality]


update_props_button = Button(label="Update Properties")
update_props_button.on_click(update_properties)

centrality_metrics = {"Degree Centrality":
                          lambda n, weight=_: centrality_algorithms.degree_centrality(n),
                      "Closeness Centrality":
                          lambda n, weight=_: centrality_algorithms.closeness_centrality(n),
                      "Betweenness Centrality":
                          centrality_algorithms.betweenness_centrality}


def update_centrality(attrname, old, new):
    centrality = centrality_metrics[select_centrality.value](network, weight='weight')
    _, nodes_centrality = zip(*sorted(centrality.items()))
    nodes_source.data['centrality'] = [7 + 10 * t / max(nodes_centrality) for t in nodes_centrality]


select_centrality = Select(title="Centrality Metric:", value="Degree Centrality",
                           options=list(centrality_metrics.keys()))
select_centrality.on_change('value', update_centrality)

コード例 #32
0
    def closenesscentrality(self, brain, outfilebase="brain", append=True):
        """ Calculates node and hub closeness centralities. For hub centralities there are two files, one with the values in and another
        with the hub identities in corresponding rows.
        """
        ## closeness centrality
        # node centrality
        outfile = outfilebase + '_closeness_centralities_nodes'
        boolVal = self.fileCheck(outfile, append)

        # open file and write headers if necessary
        if append and boolVal:
            f = open(outfile, "ab")
            headers = None
        else:
            f = open(outfile, "wb")
            headers = dict((n, n) for n in brain.G.nodes())

        writeObj = DictWriter(f, fieldnames=brain.G.nodes())
        if headers:
            writeObj.writerow(headers)

        # make calculations
        centralities = centrality.closeness_centrality(
            brain.G)  # calculate centralities for largest connected component
        nodecentralitiestowrite = dict(
            (n, None) for n in brain.G.nodes()
        )  # create a blank dictionary of all nodes in the graph
        for node in centralities:
            nodecentralitiestowrite[node] = centralities[
                node]  # populate the blank dictionary with centrality values
        writeObj.writerow(
            nodecentralitiestowrite)  # write out centrality values
        f.close()

        # hub centrality
        outfile = outfilebase + '_closeness_centralities_hubs'
        hubidfile = outfilebase + '_closeness_centralities_hubs_ids'

        OFbool = self.fileCheck(outfile, append)
        self.fileCheck(hubidfile, append)

        if append and OFbool:
            f = open(outfile, "ab")
            g = open(hubidfile, "ab")

        else:
            f = open(outfile, "wb")
            g = open(hubidfile, "wb")

        centhubs = [hub for hub in brain.hubs if hub in brain.G
                    ]  # hubs within largest connected graph component

        # write hub identifies to file
        writeObj = DictWriter(f, fieldnames=brain.hubs)
        hubwriter = DictWriter(g, fieldnames=brain.hubs)

        headers = dict(
            (n, n)
            for n in brain.hubs)  # dictionary of all hubs in network to write
        hubwriter.writerow(headers)

        hubcentralitieistowrite = dict(
            (n, None) for n in
            brain.hubs)  # empty dictionary to populate with centralities data

        for hub in centhubs:
            hubcentralitieistowrite[hub] = nodecentralitiestowrite[hub]

        writeObj.writerow(hubcentralitieistowrite)
        f.close()
        g.close()
コード例 #33
0
def closeness_centrality(graph):
    """closeness_centrality"""
    return list(centrality.closeness_centrality(graph).values())
コード例 #34
0
def calculate_all_centralities(data):
    """
        Calculates all four centralities metrics for the input graph
        Paramaters:
            data: a json object which represents the graph.
            This json is manipulated and the necessary metrics are added to it.
    """
    G = json_graph.node_link_graph(data) #loads the data to a NetworkX graph object
    #Calculates three of the metrics
    degree = centrality.degree_centrality(G)
    closeness = centrality.closeness_centrality(G)
    betweeness = centrality.betweenness_centrality(G)
    eigenvector_fail = False
    try: #Eigenvector centrality can fail to converge.
        eigenvector = centrality.eigenvector_centrality(DiGraph(G),max_iter=100000)
    except NetworkXError: #Eigenvector values will be None if calculation fails.
        eigenvector = []
        eigenvector_fail = True
        print "Max iterations exceeded"
    degree_max = -1.0
    closeness_max = -1.0
    betweeness_max = -1.0
    eigenvector_max = -1.0
    for author in data['nodes']: #Adds the unnormalized values in the json
        i = author['id']
        author['degreeCentralityUnnormalized'] = degree[i]
        author['closenessCentralityUnnormalized'] = closeness[i]
        author['betweennessCentralityUnnormalized'] = betweeness[i]
        author['eigenvectorCentralityUnnormalized'] = eigenvector[i] if not eigenvector_fail else 1.0

    #Finds the highest values for each centrality type
    for i in degree:
        if degree[i]>degree_max:
            degree_max = degree[i]
    for i in closeness:
        if closeness[i]>closeness_max:
            closeness_max = closeness[i]
    for i in betweeness:
        if betweeness[i]>betweeness_max:
            betweeness_max = betweeness[i]
    for i in eigenvector:
        if eigenvector[i]>eigenvector_max:
            eigenvector_max = eigenvector[i]

    #Normalizes the values
    for i in degree:
        if degree[i] != 0:
            degree[i] = degree[i]/degree_max
    for i in closeness:
        if closeness[i] != 0:
            closeness[i] = closeness[i]/closeness_max
    for i in betweeness:
        if betweeness[i] != 0:
            betweeness[i] = betweeness[i]/betweeness_max
    for i in eigenvector:
        if eigenvector[i] != 0:
            eigenvector[i] = eigenvector[i]/eigenvector_max

    #Adds the normalized values to the json
    for author in data['nodes']:
        i = author['id']
        author['degreeCentrality'] = degree[i]
        author['closenessCentrality'] = closeness[i]
        author['betweennessCentrality'] = betweeness[i]
        author['eigenvectorCentrality'] = eigenvector[i] if not eigenvector_fail else 1.0
    return data
コード例 #35
0
	def get_metric_from_graph(self, metric=None, nedges=None, keyword=None, graph=None, month=None):

	#'''this func will do most of the work. lets you get a named metric for nodes, optionally restricting this by month, by specified nodes, or by entity type ie lobby/staffer/lobbyist/commissioner. first constructs a cache key and then looks in the cache

		ck = str(metric) + str(month) + str(keyword)
		if ck in self.cache:
			return self.cache[ck]

		g = graph
		if keyword:
			nedges = [node for node in g.nodes_iter(data=True) if node[1]['type'] == keyword]
		#'''if a keyword search is specified, we list the nodes where that keyword is found in one of its attributes'''
		
		if metric == u'Degree':		
			upshot = self.degree(g, nedges)
		
		if metric == u'Gatekeepership':
			upshot = self.gatekeeper(g, nedges)

		if metric == u'Closeness Centrality':
			u = centrality.closeness_centrality(g, normalized=True)
			if nedges:
				filter_list = [n[0] for n in nedges]
				upshot = {g.node[k]['name']: v for k,v in u.items() if k in filter_list}
			else:
				upshot = {g.node[k]['name']: v for k,v in u.items()}

		if metric == u'Betweenness':
                        u = centrality.betweenness_centrality(g, weight='weight', normalized=True)	
			if nedges:
				filter_list = [n[0] for n in nedges]
				upshot = {g.node[k]['name']: v for k,v in u.items() if k in filter_list}
			else:
				upshot = {g.node[k]['name']: v for k,v in u.items()}

		if metric == u'Greedy_Fragile':
			upshot = self.greedy_fragile(g, nedges)

		if metric == u'Link Centrality':
			u = centrality.edge_betweenness_centrality(g, weight='weight', normalized=True)
			upshot = {}
			for k, v in u.items(): # doing it in a similar way to the other linkwise metric below.
				a, b = k
				c = g.node[a]['name']
				d = g.node[b]['name'] 
				if nedges:
					filter_list = [n[0] for n in nedges]
					if a in filter_list or b in filter_list:
						upshot[unicode(c + ' - ' + d)] = v
				else:
					upshot[unicode(a + ' - ' + b)] = v

		if metric == u'Predicted Links':
			gr = self.make_unigraph_from_multigraph(mg=g)
			u = link_prediction.resource_allocation_index(gr)
			upshot = {}
			for k, v, p in u:
				if p > 0: #RAI examines all nonexistent edges in graph and will return all of them, including ones with a zero index. we therefore filter for positive index values.
					a = g.node[k]['name']
					b = g.node[v]['name']
					if nedges:
						filter_list = [n[0] for n in nedges]
						if k in filter_list or v in filter_list:
							upshot[unicode(a + ' - ' + b)] = p
					else:
						upshot[unicode(a + ' - ' + b)] = p
		self.cacheflow(ck, data=upshot)
		return upshot