def run(location_geotable):
    graph = Graph()
    for index, row in location_geotable.iterrows():
        graph.add_node(index, **{
            'lat': row['Latitude'],
            'lon': row['Longitude']
        })
    for node1_id in range(min(graph), max(graph)):
        for node2_id in range(node1_id + 1, max(graph) + 1):
            node1_d = graph.node[node1_id]
            node2_d = graph.node[node2_id]
            node1_ll = node1_d['lat'], node1_d['lon']
            node2_ll = node2_d['lat'], node2_d['lon']
            distance = get_distance(node1_ll, node2_ll).m
            graph.add_edge(node1_id, node2_id, weight=distance)
    tree = minimum_spanning_tree(graph)
    total_distance = sum(
        edge_d['weight']
        for node1_id, node2_id, edge_d in tree.edges(data=True))
    location_count = len(graph)
    average_distance = divide_safely(total_distance, location_count, 0)
    return [
        ('total_distance_between_locations_in_meters', total_distance),
        ('location_count', location_count),
        ('average_distance_between_locations_in_meters', average_distance),
    ]
def run(location_geotable):
    graph = Graph()
    for index, row in location_geotable.iterrows():
        graph.add_node(index, {
            'lat': row['Latitude'], 'lon': row['Longitude']})
    for node1_id in xrange(min(graph), max(graph)):
        for node2_id in xrange(node1_id + 1, max(graph) + 1):
            node1_d = graph.node[node1_id]
            node2_d = graph.node[node2_id]
            node1_ll = node1_d['lat'], node1_d['lon']
            node2_ll = node2_d['lat'], node2_d['lon']
            distance = get_distance(node1_ll, node2_ll).m
            graph.add_edge(node1_id, node2_id, weight=distance)
    tree = minimum_spanning_tree(graph)
    total_distance = sum(edge_d[
        'weight'] for node1_id, node2_id, edge_d in tree.edges(data=True))
    location_count = len(graph)
    average_distance = divide_safely(total_distance, location_count, 0)
    return [
        ('total_distance_between_locations_in_meters', total_distance),
        ('location_count', location_count),
        ('average_distance_between_locations_in_meters', average_distance),
    ]
コード例 #3
0
ファイル: landscape.py プロジェクト: AlexSafatli/Pylogeny
    def getMST(self):

        ''' Acquire the minimum spanning tree for the graph. '''
        
        return alg.minimum_spanning_tree(self.graph)
コード例 #4
0
def optimize_transforms (G):
    """
    Optimize for transforms in G. Assumes G is_ready.
    Returns a clique with relative transforms between all objects.
    """

    if G.number_of_edges == 0:
        return G.to_directed()

    # Index maps from nodes and edges in the optimizer variable X.
    # Also calculate the reverse map if needed.
    node_map, edge_map = {}, {}
    rev_map = {}
    idx = 0

    for obj in G.nodes_iter():
        node_map[obj] = idx
        rev_map[idx] = obj
        idx += 1
    for i,j in G.edges_iter():
        if i < j:
            edge_map[i,j] = idx
            rev_map[idx] = i,j
        else:
            edge_map[j,i] = idx
            rev_map[idx] = j,i
        idx += 1
        
    # Some predefined variables
    I3 = np.eye(3)
        
    def get_mat_from_x(X, i, j):
        """
        X is a vertical stack of variables for transformation matrices (12 variables each).         
        Returns 3x4 matrix Ti or Tij by looking into the index maps.
        """

        if j is None:
            offset = node_map[i]*12
        else:
            if i < j:
                offset = edge_map[i,j]*12
            else:
                offset = edge_map[j,i]*12
        
        Xij = X[offset:offset+12]
        return Xij.reshape([3,4], order='F')


    def f_objective (X):
        """
        Objective function to make transforms close to average transforms.
        Sum of the norms of matrix differences between each Tij and 
        """        
        obj = 0
        for i,j in edge_map:
            obj += nlg.norm(get_mat_from_x(X, i, j) - G[i][j]['avg_tfm'][0:3,:])
            
        return obj
    
    def f_constraints (X):
        """
        Constraint function to force matrices to be valid transforms (R.T*R = I_3).
        It also forces Tj = Ti*Tij.
        Also, T0 = identity transform.
        """
        con = []
        Tis, Tijs = {},{}
        for node in node_map:
            Tis[node] = get_mat_from_x(X, node, None)
        for i,j in edge_map:
            Tijs[i,j] = get_mat_from_x(X, i, j)
        
        # T0 --> identity transform.
        con.append(nlg.norm(Tis[node_map.keys()[0]] - np.eye(4)[0:3,:]))
        
        # Constrain Ris to be valid rotations
        for node in node_map.keys()[1:]:
            Ri = Tis[node][0:3,0:3]
            con.append(nlg.norm(Ri.T.dot(Ri) - I3))
        
        # Tj = Ti*Tij
        # Rij.T*Rij = I
        for i,j in edge_map:
            Ti = np.r_[Tis[i],np.array([[0,0,0,1]])]
            Tj = np.r_[Tis[j],np.array([[0,0,0,1]])]
            Tij = np.r_[Tijs[i,j],np.array([[0,0,0,1]])]
            Rij = Tij[0:3,0:3]
              
            con.append(nlg.norm(Tj - Ti.dot(Tij)))
            con.append(nlg.norm(Rij.T.dot(Rij) - I3))
            
        return np.asarray(con)
    
    ### Setting initial values by walking through maximal spanning tree.
    G_init = G.copy()
    for i,j in G_init.edges_iter():
        G_init[i][j]['weight'] = -1*G_init[i][j]['n']
    G_init_tree = nxa.minimum_spanning_tree(G_init)
    
    x_init = np.zeros(12*(G.number_of_nodes() + G.number_of_edges()))
    
    node0 = G_init_tree.nodes()[0]
    offset0 = node_map[node0]
    x_init[offset0:offset0+9] = I3.reshape(9)
    
    fringe = [node0]
    seen = []
    while len(fringe)>0:
        node = fringe.pop(0)
        if node in seen: continue
        seen.append(node)
        for n_node in G_init_tree.neighbors(node):
            if n_node in seen: continue
            fringe.append(n_node)
            offset = node_map[n_node]*12
            tfm = G.edge[node][n_node]['avg_tfm']
            if node > n_node:
                tfm = nlg.inv(tfm)

            x_init[offset:offset+12] = tfm[0:3,:].reshape(12, order='F')
            
    for i,j in edge_map:
        offset = edge_map[i,j]*12
        x_init[offset:offset+12] = G.edge[i][j]['avg_tfm'][0:3,:].reshape(12,order='F')
    ### ###
    
    print "Initial x: ", x_init
    (X, fx, _, _, _) = sco.fmin_slsqp(func=f_objective, x0=x_init, f_eqcons=f_constraints, iter=100, full_output=1)
    
    # Create output optimal graph and copy edge transforms
    G_opt = G.to_directed()
    for i,j in edge_map:
        Tij = np.r_[get_mat_from_x(X, i, j),np.array([[0,0,0,1]])]
        Tji = nlg.inv(Tij)
        
        G_opt.edge[i][j] = {'tfm':Tij}
        G_opt.edge[j][i] = {'tfm':Tji}
        
    # Add all edges to make clique
    # Follow shortest path to get transform for edge
    for i,j in itertools.combinations(sorted(G_opt.nodes()), 2):
        if not G_opt.has_edge(i,j):
            ij_path = nxa.shortest_path(G_opt, i, j)
            Tij = G_opt.edge[ij_path[0]][ij_path[1]]['tfm']
            for p in xrange(2,len(ij_path)):
                Tij = Tij.dot(G_opt.edge[ij_path[p-1]][ij_path[p]]['tfm'])
            Tji = nlg.inv(Tij)
            
            G_opt.add_edge(i,j)
            G_opt.add_edge(j,i)
            G_opt.edge[i][j] = {'tfm':Tij}
            G_opt.edge[j][i] = {'tfm':Tji}
    
    for i in G_opt.nodes_iter():
        G_opt.add_edge(i,i)
        G_opt[i][i]['tfm'] = np.eye(4)
    
    n = G_opt.number_of_nodes()
    try:
        assert G_opt.number_of_edges() == n**2
    except AssertionError:
        print "Not all edges found...? Fix this"

    return G_opt
コード例 #5
0
    def getMST(self):
        ''' Acquire the minimum spanning tree for the graph. '''

        return alg.minimum_spanning_tree(self.graph)