コード例 #1
0
ファイル: Simulation.py プロジェクト: Jshimer2/covid-sim
def generate_network(n_nodes, mean_inters, std_dev, n_sick):
    
    # Create a graph with selected attributes
    n_ties = pd.Series(map(int, np.round(np.random.normal(mean_inters, std_dev, n_nodes))))
    
    # Who distances themselves?  Make them safer
    distancers = random.sample(list(n_ties.index), round(prop_social_distancing * n_nodes))
    n_ties[distancers] = n_ties[distancers] * effectiveness_social_distancing
 
    # If you isolate, you dont get sick and dont get others sick
    isolaters = random.sample(list(n_ties.index), round(prop_self_isolating * n_nodes))
    n_ties[isolaters] = 0
    
    G = expected_degree_graph(n_ties, selfloops=False)
    
    # Decide who is sick
    nx.set_node_attributes(G, 0, 'COVID-19')
    nx.set_node_attributes(G, 0, 'Time Sick')
    nx.set_node_attributes(G, 0, 'Symptomatic')
    nx.set_node_attributes(G, 0, 'Time Showing')
    
    sick_nodes = random.sample(list(G.nodes), n_sick)
    for node in sick_nodes:
        G.nodes[node]['COVID-19'] = 1
        
    return(G, sick_nodes)
コード例 #2
0
"""
========================
Expected Degree Sequence
========================

Random graph from given degree sequence.
"""

import networkx as nx
from networkx.generators.degree_seq import expected_degree_graph

# make a random graph of 500 nodes with expected degrees of 50
n = 500  # n nodes
p = 0.1
w = [p * n for i in range(n)]  # w = p*n for all nodes
G = expected_degree_graph(w)  # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
for i, d in enumerate(dh):
    print(f"{i:2} ({d:2}) {'*'*d}")
コード例 #3
0
========================
Expected Degree Sequence
========================

Random graph from given degree sequence.
"""
# Author: Aric Hagberg ([email protected])

#    Copyright (C) 2006-2018 by
#    Aric Hagberg <*****@*****.**>
#    Dan Schult <*****@*****.**>
#    Pieter Swart <*****@*****.**>
#    All rights reserved.
#    BSD license.

import networkx as nx
from networkx.generators.degree_seq import expected_degree_graph

# make a random graph of 500 nodes with expected degrees of 50
n = 500  # n nodes
p = 0.1
w = [p * n for i in range(n)]  # w = p*n for all nodes
G = expected_degree_graph(w)  # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
low = min(nx.degree(G))
for i in range(low, len(dh)):
    bar = ''.join(dh[i] * ['*'])
    print("%2s (%2s) %s" % (i, dh[i], bar))
コード例 #4
0
def network_creation (path,t):     #t number of nodes
    lista_attributi = ['gender', 'age', 'state']
    w = []
    p_df= covid_statistics(path+"covid_gender_age.csv")
    p_df1 = p_df[p_df.columns[-2:]]
    p_df1 = p_df1.replace(p_df1, 0)
    diz = p_df1.to_dict('index')
    df_con = pd.read_csv(path+"contacts_agegroups.csv", index_col=0, names=['contacts'], header=None)
    df_con = round(df_con.sort_values(by=['contacts']))
    df_con.rename(index={'70-100': '70-105'}, inplace=True)
    print('The number of daily contat for each age group is:\n',df_con)
    table= gen_age(path+"Italy-2019.csv")
    #print(diz)
    nodi = {}  # final dictionary will contain: node number: [sex,age,State]
    ind= -1
    for age in (list(table.index.values)):
        e = re.findall(r'\d+', age)
        età = randrange(int(e[0]), int(e[1]))
        for sex in (list(table.columns)):

            perc = table.loc[age][sex]  # this is the fraction (percentage) of population that will have a specific sex and age
                                        # rows= age , col= sex
            n = int(round(perc * t / 100))
            for i in range(len(df_con)):
                N=df_con.index[i].split('-')
                if int(N[0]) <= età <= int(N[1]):
                    w1 = [df_con.iloc[i][0] for k in range(n)]
                    for el in w1:
                        ind=ind+1
                        nodi[ind]=[sex,età, 'S']
                        for ages in diz:
                            ages1=ages.split('-')
                            if int(ages1[0]) <=età<= int(ages1[1]):
                                if diz[ages][sex]==0:
                                    diz[ages][sex]=[ind]
                                else:
                                    diz[ages][sex].append(ind)

                    w.extend(w1)

    #HERE WE CREATED W THAT IS A LIST CONTAINING THE NUMBER OF CONTACTS FOR EACH NODE
    G = expected_degree_graph(w)  # configuration model
    print("Degree histogram")
   # dh = nx.degree_histogram(G)
    #print(dh)
    #print("degree (#nodes) ****")
    #for i, d in enumerate(dh):
     #   print(f"{i:2} ({d:2}) {'*'*d}")
    degree_sequence = sorted([d for n, d in G.degree()], reverse=True)  # degree sequence
    degreeCount = collections.Counter(degree_sequence)
    deg, cnt = zip(*degreeCount.items())

    #fig, ax = plt.subplots()
    #plt.bar(deg, cnt, width=0.80, color="b")

    #plt.title("Degree Histogram")
    #plt.ylabel("Count")
    #plt.xlabel("Degree")
    #ax.set_xticks([d + 0.4 for d in deg])
    #ax.set_xticklabels(deg)
    #plt.show()
    #HERE WE ASSIGN ALL THE ATTRIBUTES (AGE, GENDER, AND STATE) FOR EACH NODE OF THE NETWORK
    for key in nodi:
        for j in range(len(lista_attributi)):
            G.nodes[int(key)][lista_attributi[j]] = nodi[key][j]  # per ogni attributo della lista, prende il valore dal dizionario
    return(G,diz,p_df)