コード例 #1
0
ファイル: game.py プロジェクト: gus0k/cdc20_code
def generate_random_uniform(N, T, G_method, seed=1234):

    rng = np.random.RandomState(seed)
    N_ = 4 if N >= 5 else N - 1
    switcher = {
        'complete': nx.complete_graph(N),
        'path': nx.path_graph(N),
        'cycle': nx.cycle_graph(N),
        'regular': nx.random_regular_graph(N_, N, seed=rng),
        'wheel': nx.wheel_graph(N),
        'tree': nx.random_tree(N, seed=rng),
        'chordal': nx.Graph(nx.chordal_cycle_graph(N)),
    }
    G = switcher.get(G_method)

    player_list = []
    for n in range(N):
        p = Player(x=rng.uniform(3, -3, T),
                   sm=13.5,
                   s0=0,
                   ram=5,
                   ec=0.9,
                   ed=0.9)
        player_list.append(p)

    buying_price = np.ones(T) * 3.0
    selling_price = np.ones(T) * 1.0

    game = Game(player_list, buying_price, selling_price, G)
    game.graphtype = G_method
    game.seed = seed
    return game
コード例 #2
0
def expanders_graphs():
    print("Margulis - Gabber - Galil Graph")
    MGGG = nx.margulis_gabber_galil_graph(n=3)
    draw_graph(MGGG)
    print("Chordal - Cycle Graph")
    MGGG = nx.chordal_cycle_graph(8)
    draw_graph(MGGG)
コード例 #3
0
def make_graph(g_name, n):
    switcher = {
        "path": nx.path_graph(n),
        "complete": nx.complete_graph(n),
        "binomial tree": nx.binomial_tree(n),
        "circular ladder": nx.circular_ladder_graph(n),
        "cycle": nx.cycle_graph(n),
        "dorogovtsev": nx.dorogovtsev_goltsev_mendes_graph(n),
        "ladder": nx.ladder_graph(n),
        "star": nx.star_graph(n),
        "wheel": nx.wheel_graph(n),
        "margulis gabber galil": nx.margulis_gabber_galil_graph(n),
        "chordal cycle": nx.chordal_cycle_graph(n),
        "hypercube": nx.hypercube_graph(n),
        "mycielski": nx.mycielski_graph(n)
        }
    return switcher.get(g_name)
コード例 #4
0
def gen_laplacian(data_num=DATA_NUM, opt=27, cache=False):
    label = None

    if cache:
        print('Loading cached graph')
        graph = pk.load(open('tmp/g.pk', 'rb'))
    else:
        print('Generating graph opt {}'.format(opt))

        if 1 == opt:
            graph = gen_rand_graph(data_num=data_num)
        if 2 == opt:
            top_num = random.randint(1, data_num)
            bottom_num = data_num - top_num
            graph = nx.bipartite.random_graph(top_num, bottom_num, 0.9)
            label = [d['bipartite'] for n, d in graph.nodes(data=True)]
        elif 3 == opt:
            graph = nx.balanced_tree(4, 5)
        elif 4 == opt:
            graph = nx.complete_graph(data_num)
        elif 5 == opt:
            no1 = random.randint(1, data_num)
            no2 = random.randint(1, int(data_num / no1))
            no3 = data_num / no1 / no2
            graph = nx.complete_multipartite_graph(no1, no2, no3)
        elif 6 == opt:
            graph = nx.circular_ladder_graph(data_num)
        elif 7 == opt:
            graph = nx.cycle_graph(data_num)
        elif 8 == opt:
            graph = nx.dorogovtsev_goltsev_mendes_graph(5)
        elif 9 == opt:
            top_num = int(random.random() * data_num)
            bottom_num = data_num / top_num
            graph = nx.grid_2d_graph(top_num, bottom_num)
        elif 10 == opt:
            no1 = random.randint(1, data_num)
            no2 = random.randint(1, int(data_num / no1))
            no3 = data_num / no1 / no2
            graph = nx.grid_graph([no1, no2, no3])
        elif 11 == opt:
            graph = nx.hypercube_graph(10)
        elif 12 == opt:
            graph = nx.ladder_graph(data_num)
        elif 13 == opt:
            top_num = int(random.random() * data_num)
            bottom_num = data_num - top_num
            graph = nx.lollipop_graph(top_num, bottom_num)
        elif 14 == opt:
            graph = nx.path_graph(data_num)
        elif 15 == opt:
            graph = nx.star_graph(data_num)
        elif 16 == opt:
            graph = nx.wheel_graph(data_num)
        elif 17 == opt:
            graph = nx.margulis_gabber_galil_graph(35)
        elif 18 == opt:
            graph = nx.chordal_cycle_graph(data_num)
        elif 19 == opt:
            graph = nx.fast_gnp_random_graph(data_num, random.random())
        elif 20 == opt:  # jump eigen value
            graph = nx.gnp_random_graph(data_num, random.random())
        elif 21 == opt:  # disconnected graph
            graph = nx.dense_gnm_random_graph(data_num, data_num / 2)
        elif 22 == opt:  # disconnected graph
            graph = nx.gnm_random_graph(data_num, data_num / 2)
        elif 23 == opt:
            graph = nx.erdos_renyi_graph(data_num, data_num / 2)
        elif 24 == opt:
            graph = nx.binomial_graph(data_num, data_num / 2)
        elif 25 == opt:
            graph = nx.newman_watts_strogatz_graph(data_num, 5,
                                                   random.random())
        elif 26 == opt:
            graph = nx.watts_strogatz_graph(data_num, 5, random.random())
        elif 26 == opt:  # smooth eigen
            graph = nx.connected_watts_strogatz_graph(data_num, 5,
                                                      random.random())
        elif 27 == opt:  # smooth eigen
            graph = nx.random_regular_graph(5, data_num)
        elif 28 == opt:  # smooth eigen
            graph = nx.barabasi_albert_graph(data_num, 5)
        elif 29 == opt:  # smooth eigen
            graph = nx.powerlaw_cluster_graph(data_num, 5, random.random())
        elif 30 == opt:  # smooth eigen
            graph = nx.duplication_divergence_graph(data_num, random.random())
        elif 31 == opt:
            p = random.random()
            q = random.random()
            graph = nx.random_lobster(data_num, p, q)
        elif 32 == opt:
            p = random.random()
            q = random.random()
            k = random.random()

            graph = nx.random_shell_graph([(data_num / 3, 50, p),
                                           (data_num / 3, 40, q),
                                           (data_num / 3, 30, k)])
        elif 33 == opt:  # smooth eigen
            top_num = int(random.random() * data_num)
            bottom_num = data_num - top_num
            graph = nx.k_random_intersection_graph(top_num, bottom_num, 3)
        elif 34 == opt:
            graph = nx.random_geometric_graph(data_num, .1)
        elif 35 == opt:
            graph = nx.waxman_graph(data_num)
        elif 36 == opt:
            graph = nx.geographical_threshold_graph(data_num, .5)
        elif 37 == opt:
            top_num = int(random.random() * data_num)
            bottom_num = data_num - top_num
            graph = nx.uniform_random_intersection_graph(
                top_num, bottom_num, .5)

        elif 39 == opt:
            graph = nx.navigable_small_world_graph(data_num)
        elif 40 == opt:
            graph = nx.random_powerlaw_tree(data_num, tries=200)
        elif 41 == opt:
            graph = nx.karate_club_graph()
        elif 42 == opt:
            graph = nx.davis_southern_women_graph()
        elif 43 == opt:
            graph = nx.florentine_families_graph()
        elif 44 == opt:
            graph = nx.complete_multipartite_graph(data_num, data_num,
                                                   data_num)

        # OPT 1
        # norm_lap = nx.normalized_laplacian_matrix(graph).toarray()

        # OPT 2: renormalized

        # pk.dump(graph, open('tmp/g.pk', 'wb'))

    # plot_graph(graph, label)
    # note difference: normalized laplacian and normalzation by eigenvalue
    norm_lap, eigval, eigvec = normalize_lap(graph)

    return graph, norm_lap, eigval, eigvec
コード例 #5
0
ファイル: test_load.py プロジェクト: teh-f00l/LiSE
import pytest
import os
from allegedb import ORM
import networkx as nx

scalefreestart = nx.MultiDiGraph(name='scale_free_graph_5')
scalefreestart.add_edges_from([(0, 1), (1, 2), (2, 0)])

testgraphs = [
    nx.chvatal_graph(),
    nx.scale_free_graph(5, create_using=scalefreestart),
    nx.chordal_cycle_graph(
        5, create_using=nx.MultiGraph(name='chordal_cycle_graph_5')),
]
# have to name it after creation because it clears the create_using
path_graph_9 = nx.path_graph(9)
path_graph_9.name = 'path_graph_9'
testgraphs.append(path_graph_9)


@pytest.fixture
def db():
    name = 'allegedb_load_test.db'
    if os.path.exists(name):
        os.remove(name)
    with ORM('sqlite:///' + name) as orm:
        for graph in testgraphs:
            {
                nx.Graph: orm.new_graph,
                nx.DiGraph: orm.new_digraph,
                nx.MultiGraph: orm.new_multigraph,
コード例 #6
0
n = 4

#def graph_caller(self, graph_name):
switcher = {
        "path": nx.path_graph(n),
        "complete": nx.complete_graph(n),
        "binomial tree": nx.binomial_tree(n),
        "circular ladder": nx.circular_ladder_graph(n),
        "cycle": nx.cycle_graph(n),
        "dorogovtsev": nx.dorogovtsev_goltsev_mendes_graph(n),
        "ladder": nx.ladder_graph(n),
        "star": nx.star_graph(n),
        "wheel": nx.wheel_graph(n),
        "margulis gabber galil": nx.margulis_gabber_galil_graph(n),
        "chordal cycle": nx.chordal_cycle_graph(n),
        "hypercube": nx.hypercube_graph(n),
        "mycielski": nx.mycielski_graph(n)
        }
#    return switcher.get(graph_name,"Invalid choice")


graph_name = input("Enter a graph name to generate\n")
print(graph_name)

#G = graph_caller(graph_name)
G = switcher.get(graph_name)

for k in range(3,11):
    for x in range(3,11):
        #greedy_coloring = nx.coloring.greedy_color(G, strategy='largest_first')