コード例 #1
0
def compute_and_measure_graphs(p):
    graph = nx.DiGraph()
    t_triples, t_cardinality = hdt.search_triples("", p, "")
    print("amount of triples: ", t_cardinality)
    for (l, p, r) in t_triples:
        if p == "http://www.w3.org/2000/01/rdf-schema#subClassOf":
            graph.add_edge(r, l)

    # avc = nx.average_clustering(graph) # average clustering coefficient
    # trans = nx.transitivity(graph)
    # pearson = nx.degree_pearson_correlation_coefficient(graph)
    reaching = nx.global_reaching_centrality(graph)

    return reaching

    # compute SCC
    # mydict = {}
    # for n in graph.nodes:
    # 	collect_succssor = []
    # 	for s in graph.successors(n):
    # 		collect_succssor.append(s)
    # 	mydict[n] = collect_succssor
    # sccs = tarjan(mydict)
    # filter_scc = [x for x in sccs if len(x)>1]
    # # compute the counter for ths filtered SCC
    # ct = Counter()
    # for f in filter_scc:
    # 	ct[len(f)] += 1
    # print ('SCC info: ', ct)
    # # obtain the corresponding scc graphs
    # scc_graphs = []
    # for s in filter_scc:
    # 	g = graph.subgraph(s).copy()
    # 	scc_graphs.append(g)
    return filter_scc, scc_graphs
コード例 #2
0
def func(G):
    """
    The function being optimized by composite graphs.
    """
    n = G.number_of_nodes()
    return (logpaths(G) / n)**0.5 - 2 * nx.global_reaching_centrality(
        G) - nx.average_clustering(G)
コード例 #3
0
 def draw_graph(g):
     weight = [g[u][v]['weight'] / 5 for u, v in g.edges()]
     # pos = nx.kamada_kawai_layout(g)
     pos = nx.spring_layout(g)
     # plt.subplot(111)
     # nx.draw(g, pos, with_labels=True, width=weight)
     # plt.show()
     connectivity = nx.algebraic_connectivity(g)
     centrality = nx.global_reaching_centrality(g)
     # print(f'density = {nx.density(g):.4f}')
     return connectivity, centrality
コード例 #4
0
def erdos_renyi_grc(G):

    grc_test = []
    N = nx.number_of_nodes(G)
    E = nx.number_of_edges(G)
    prob_edges = ((N * (N - 1)) / 2) / E
    for i in range(500):
        er_graph = nx.erdos_renyi_graph(
            N, prob_edges,
            seed=10)  #number of nodes, probability for edge creation
        grc = nx.global_reaching_centrality(er_graph)
        grc_test.append(grc)
    print grc_test
コード例 #5
0
def obtenerValores(dirigido, noDirigido):
    # variables locales
    datos = []
    m = 0
    c = 0
    dm = 0
    com = 0
    # 1; orden - ambas
    #print("orden")
    datos.append(str(dirigido.order()))
    # 2; tamaño - dirigida
    #print("tamaño")
    datos.append(str(dirigido.size()))
    # 3; densidad, dirigida
    #print("densidad")
    datos.append(str(nx.density(dirigido)))
    # 4; grado promedio - dirigido
    #print("grado promedio")
    datos.append(str((dirigido.size()) / (dirigido.order())))
    # 5; diametro - no dirigido
    #print("diametro")
    datos.append(str(nx.diameter(noDirigido)))
    # 6; radio - no dirigido
    #print("radio")
    datos.append(str(nx.radius(noDirigido)))
    # 7; tamaño de clique mas grande - no dirigida
    #print("clique mas grande")
    datos.append(str(nx.graph_clique_number(noDirigido)))
    # 8; numero de cliques maximales - no dirigida
    #print("cliques maximales")
    datos.append(str(nx.graph_number_of_cliques(noDirigido)))
    # 9; global reaching centrality - dirigido
    #print("reachability")
    datos.append(str(nx.global_reaching_centrality(dirigido)))
    # 10; clustering coefficient - dirigida
    #print("clustering")
    datos.append(str(nx.average_clustering(dirigido)))
    # 11; transitividad - dirigida
    #print("transitivity")
    datos.append(str(nx.transitivity(dirigido)))
    # 12; 13; 14; datos MODC: modularidad, dependencia minima, total de comunidades - no dirigido
    #print("MODC")
    (m, dm, com) = MODC(noDirigido, True)
    datos.append(str(m))
    datos.append(str(dm))
    datos.append(str(com))
    # fin de funcion
    return (datos)
コード例 #6
0
def features_vector(file):  #self

    base_list = name_base(path_pdb, file)

    for i in range(len(base_list)):
        print base_list[i]
        G = input_nx(path_data, base_list[i])
        L = laplacian_walk(G)
        er_lap = erdos_renyi_lap(G)
        H = load_hydrophobic(path_data, base_list[i])
        C = load_charged(path_data, base_list[i])
        A = alpha_content(path_pdb, base_list[i])
        B = beta_content(path_pdb, base_list[i])
        with open((feat_path + ('features_' + base_list[i] + '.txt')),
                  'w') as w:
            #w.write(str(float(nx.number_of_edges(G))/float(nx.number_of_nodes(G)))+'\n') #removed avg degree
            try:
                w.write(
                    str(
                        nx.average_shortest_path_length(G) /
                        (((math.log(float(nx.number_of_nodes(G)))) - 0.5772) /
                         ((math.log(float(nx.number_of_edges(G))) /
                           (float(nx.number_of_nodes(G)))) + 0.5))) +
                    '\n')  #avg shortest path length
                w.write(
                    str(
                        nx.diameter(G) /
                        (math.log((float(nx.number_of_nodes(G)))) / (math.log(
                            float(nx.number_of_edges(G)) /
                            float(nx.number_of_nodes(G)))))) + '\n')  #diameter
                w.write(
                    str(nx.radius(G) / nx.average_shortest_path_length(G)) +
                    '\n')  #radius (min. shortest path)
                w.write(
                    str(
                        nx.average_clustering(G) /
                        ((float(nx.number_of_edges(G)) /
                          float(nx.number_of_nodes(G))) /
                         float(nx.number_of_nodes(G)))) +
                    '\n')  #clustering coefficient of random graph
                #***Number of quasi-rigid domains
                w.write(str(nx.degree_assortativity_coefficient(G)) +
                        '\n')  #assortativity coefficient
                w.write(str(nx.global_reaching_centrality(G)) +
                        '\n')  #nx.degree_centrality(G)
                #***Residue intrinsic dimensionality (may be used to compute 6.?)
                w.write(
                    str(L / er_lap) + '\n'
                )  #Normalized laplacian walk from function, N = D^{-1/2} L D^{-1/2} as well with ER
                w.write(str(float(A) / (float(A) + float(B))) +
                        '\n')  #alpha content
                w.write(str(float(B) / (float(A) + float(B))) +
                        '\n')  #beta content

                w.write(
                    str((float(nx.number_of_edges(H)) /
                         float(nx.number_of_nodes(H))) /
                        (float(nx.number_of_edges(G)) /
                         float(nx.number_of_nodes(G)))) + '\n'
                )  #***Average degree of hydrophobic residues (F,M,W,I,V,L,P,A) norm
                w.write(
                    str((float(nx.average_clustering(G)) /
                         ((float(nx.number_of_edges(G)) /
                           float(nx.number_of_nodes(G))) /
                          float(nx.number_of_nodes(G)))) /
                        (float(nx.average_clustering(H)) /
                         ((float(nx.number_of_edges(H)) /
                           float(nx.number_of_nodes(H))) /
                          float(nx.number_of_nodes(H))))) + '\n'
                )  #clustering coefficient of random graph - hydrophobic residues norm
                w.write(
                    str(nx.global_reaching_centrality(H)) + '\n'
                )  #global, Average local reaching centrality of hydrophobic residues

                w.write(
                    str((float(nx.number_of_edges(C)) /
                         float(nx.number_of_nodes(C))) /
                        (float(nx.number_of_edges(G)) /
                         float(nx.number_of_nodes(G)))) + '\n'
                )  #***Average degree of charged residues (R,D,E,H,K) norm
                try:
                    w.write(
                        str((float(nx.average_clustering(G)) /
                             ((float(nx.number_of_edges(G)) /
                               float(nx.number_of_nodes(G))) /
                              float(nx.number_of_nodes(G)))) /
                            (float(nx.average_clustering(C)) /
                             ((float(nx.number_of_edges(C)) /
                               float(nx.number_of_nodes(C))) /
                              float(nx.number_of_nodes(C))))) + '\n'
                    )  #clustering coefficient of random graph - charged residues norm
                except ZeroDivisionError:
                    w.write('0.0' + '\n')
                w.write(
                    str(nx.global_reaching_centrality(C)) + '\n'
                )  #global, Average local reaching centrality of charged residues

                p = (float(nx.number_of_edges(G)) /
                     float(nx.number_of_nodes(G))) / (
                         float(nx.number_of_nodes(G)) - 1)
                X = [x[1] for x in G.degree()]
                w.write(
                    str(
                        np.var(X, dtype=np.float64) /
                        (float(nx.number_of_nodes(G)) * p * (1 - p))) +
                    '\n')  #variance
                w.write(
                    str(
                        skew(X, bias=False) / ((1 - (2 * p)) / (math.sqrt(
                            ((float(nx.number_of_nodes(G)) - 1) * p) *
                            (1 - p))))) + '\n')  #skewness
            except nx.exception.NetworkXError:
                pass  #graph is not connected

            print base_list[
                i], ' *.txt file has been saved! (original PDB, hydrophobic, charged)'
}

fun_assortativity_measures = {
    "average_neighbor_degree": nx.average_neighbor_degree
}

fun_global_measures = {
    "global_density":
    lambda G: dict(zip(G.nodes, [nx.density(G.to_undirected())] * len(G))),
    "global_average_shortest_path_length":
    lambda G: dict(
        zip(G.nodes, [nx.average_shortest_path_length(G.to_undirected())] *
            len(G))),
    "global_reaching_centrality":
    lambda G: dict(
        zip(G.nodes, [nx.global_reaching_centrality(G.to_undirected())] * len(
            G))),
    "global_degree_assortativity_coefficient":
    lambda G: dict(
        zip(G.nodes, [nx.degree_assortativity_coefficient(G.to_undirected())] *
            len(G))),
    "global_degree_pearson_correlation_coefficient":
    lambda G: dict(
        zip(G.nodes, [
            nx.degree_pearson_correlation_coefficient(G.to_undirected())
        ] * len(G))),
    "global_transitivity":
    lambda G: dict(zip(G.nodes, [nx.transitivity(G.to_undirected())] * len(G))
                   ),
    "global_average_clustering":
    lambda G: dict(
コード例 #8
0
def features_part1(info):
    """
    second set of features.
    """
    G = info['G']
    n = info['num_nodes']
    num_units = info['num_units']
    edges = info['edges']
    nedges = len(edges)

    res = dict()
    res['num_nodes'] = n
    res['num_edges'] = nedges
    res['reduce_frac'] = num_units / n - 1
    res['edges_per_node'] = nedges / n
    res['density'] = nx.density(G)
    res['transitivity'] = nx.transitivity(G)
    res['average_clustering'] = nx.average_clustering(G)
    res['average_node_connectivity'] = nx.average_node_connectivity(G)
    res['average_shortest_path_length'] = nx.average_shortest_path_length(G)
    res['s_metric_norm'] = np.sqrt(nx.s_metric(G, normalized=False) / nedges)
    res['global_reaching_centrality'] = nx.global_reaching_centrality(G)
    res['edge_connectivity'] = nx.edge_connectivity(G, 0, n - 1)
    res['modularity_trace'] = np.real(np.sum(nx.modularity_spectrum(G)))

    stages = info['stages']
    stagedict = get_stage_dict(n, stages)
    edges_diff = np.array([stagedict[j] - stagedict[i] for (i, j) in edges])
    n0 = np.sum(edges_diff == 0)
    n1 = np.sum(edges_diff == 1)
    n2 = np.sum(edges_diff == 2)

    res['intrastage'] = n0 / nedges
    res['interstage'] = n1 / nedges
    res['hops_per_node'] = n2 / n

    degrees = np.array(nx.degree(G))[:, 1]
    res['mean_degree'] = np.mean(degrees)
    res['std_degree'] = np.std(degrees)
    res['span_degree'] = np.amax(degrees) / np.amin(degrees)

    triadic = nx.triadic_census(G)
    res['021D'] = triadic['021D'] / nedges
    res['021U'] = triadic['021U'] / nedges
    res['021C'] = triadic['021C'] / nedges
    res['030T'] = triadic['030T'] / nedges

    paths_nums = pathhist(G)
    ns = np.arange(1, n + 1)
    paths_total = np.sum(paths_nums)
    mean_path = np.sum(ns * paths_nums) / paths_total
    mean_pathsqr = np.sum(ns**2 * paths_nums) / paths_total
    std_path = np.sqrt(mean_pathsqr - mean_path**2)

    nonz = np.nonzero(paths_nums)[0]
    shortest_path = nonz[0] + 1
    longest_path = nonz[-1] + 1

    res['log_paths'] = np.log(paths_total)
    res['mean_path'] = mean_path
    res['std_paths'] = std_path
    res['min_path'] = shortest_path
    res['max_path'] = longest_path
    res['span_path'] = longest_path / shortest_path

    return res
コード例 #9
0
 def test_non_positive_weights(self):
     with pytest.raises(nx.NetworkXError):
         G = nx.DiGraph()
         nx.global_reaching_centrality(G, weight="weight")
コード例 #10
0
 def test_cycle_directed_weighted(self):
     G = nx.DiGraph()
     G.add_weighted_edges_from([(1, 2, 1), (2, 1, 1)])
     assert nx.global_reaching_centrality(G) == 0
コード例 #11
0
 def test_cycle_undirected_unweighted(self):
     G = nx.Graph()
     G.add_edge(1, 2)
     assert nx.global_reaching_centrality(G, weight=None) == 0
コード例 #12
0
 def test_negatively_weighted(self):
     with pytest.raises(nx.NetworkXError):
         G = nx.Graph()
         G.add_weighted_edges_from([(0, 1, -2), (1, 2, +1)])
         nx.global_reaching_centrality(G, weight="weight")