コード例 #1
0
ファイル: backend.py プロジェクト: benghaem/MutNN
def opt_simple_model_para(graph: nx.DiGraph, alloc_map,
                          config: Config) -> None:

    graph.add_node(PNO_GRAPH_HEAD_ID)
    graph.add_edge(PNO_GRAPH_HEAD_ID, 0)

    graph.nodes[PNO_GRAPH_HEAD_ID]["node"] = Node(-1, ops.O2P_GRAPH_HEAD, {},
                                                  {}, {}, 0)

    cuda_devices = get_valid_cuda_devices()
    num_cuda = len(cuda_devices)

    total_nodes = graph.number_of_nodes()

    # HACK
    split_len = total_nodes // 5

    for gnode in graph.nodes:
        node = graph.nodes[gnode]["node"]
        if node.device_type == "gpu":
            node.device_id = node.node_id // split_len
            # HACKY SAFETY
            if node.device_id > num_cuda - 1:
                node.device_id = num_cuda - 1

    return
コード例 #2
0
ファイル: dep_graph.py プロジェクト: zhu8655/angr
        def _transitive_closure(def_: Definition,
                                graph: networkx.DiGraph,
                                result: networkx.DiGraph,
                                visited: Optional[Set[Definition]] = None):
            """
            Returns a joint graph that comprises the transitive closure of all defs that `def_` depends on and the
            current graph `result`. `result` is updated.
            """
            if def_ in self._transitive_closures.keys():
                closure = self._transitive_closures[def_]
                # merge closure into result
                result.add_edges_from(closure.edges())
                return result

            predecessors = list(graph.predecessors(def_))

            result.add_node(def_)
            result.add_edges_from(
                list(
                    map(lambda e: (*e, graph.get_edge_data(*e)),
                        map(lambda p: (p, def_), predecessors))))

            visited = visited or set()
            visited.add(def_)
            predecessors_to_visit = set(predecessors) - set(visited)

            closure = reduce(
                lambda acc, def0: _transitive_closure(
                    def0, graph, acc, visited), predecessors_to_visit, result)

            self._transitive_closures[def_] = closure
            return closure
コード例 #3
0
    def graph(self) -> DiGraph:
        """
        Get a graph of the job indicating the inputs to the job.

        Returns
        -------
        DiGraph
            The graph showing the connectivity of the jobs.
        """
        from networkx import DiGraph

        edges = []
        for uuid, refs in self.input_references_grouped.items():
            properties: list[str] | str = [
                ref.attributes_formatted[-1]
                .replace("[", "")
                .replace("]", "")
                .replace(".", "")
                for ref in refs
                if ref.attributes
            ]
            properties = properties[0] if len(properties) == 1 else properties
            properties = properties if len(properties) > 0 else "output"
            edges.append((uuid, self.uuid, {"properties": properties}))

        graph = DiGraph()
        graph.add_node(self.uuid, job=self, label=self.name)
        graph.add_edges_from(edges)
        return graph
コード例 #4
0
def extend_refinements_graph(
    g: networkx.DiGraph,
    stmt: Statement,
    less_specifics: List[int],
    matches_fun: Optional[Callable[[Statement], str]] = None,
) -> networkx.DiGraph:
    """Extend refinements graph with a new statement and its refinements.

    Parameters
    ----------
    g :
        A refinements graph to be extended.
    stmt :
        The statement to be added to the refinements graph.
    less_specifics :
        A list of statement hashes of statements that are refined
        by this statement (i.e., are less specific versions of it).
    matches_fun :
        An optional function to calculate the matches key and hash of a
        given statement. Default: None
    """
    sh = stmt.get_hash(matches_fun=matches_fun)
    g.add_node(sh, stmt=stmt)
    for less_spec in less_specifics:
        g.add_edge(less_spec, sh)
    return g
コード例 #5
0
ファイル: neo4j_db.py プロジェクト: rlquinn/landscaper
    def get_node_by_uuid_web(self, uuid, json_out=True):
        """
        Returns a networkx graph containing matching node.
        :param uuid: The node name.
        :return: Graph containing node or none.
        """
        graph = DiGraph()
        node_query = "match (i)-[r:STATE]->(s) where i.name='{}' and r.to>{}" \
                     " return i, s".format(uuid, str(time.time()))
        query_result = self.graph_db.run(node_query)

        result = list(query_result)
        if result:
            records = result[0]
            node = dict(records[0])
            state_attrs = dict(records[1])
            if 'geo' in state_attrs:
                state_attrs['geo'] = json.loads(state_attrs['geo'])

            state_attributes = self._unique_attribute_names(
                IDEN_PROPS, state_attrs, node["type"])
            node.update(state_attributes)
            graph.add_node(uuid, node)

            if json_out:
                graph = json.dumps(json_graph.node_link_data(graph))
            return graph
        return None
コード例 #6
0
ファイル: neo4j_db.py プロジェクト: rlquinn/landscaper
 def get_node_by_properties_web(self, properties, start=None, timeframe=0):
     """
     Return a list of nodes which match the given properties.
     :param properties: A tuple with the key, value.  Example: (k, v)
     :return: A graph of matching nodes
     """
     start = start or time.time()
     if not properties:
         return None
     start = int(float(start))
     timeframe = int(float(timeframe))
     end = start + timeframe
     # Build conditional query
     conditional_query = ""
     property_key = properties[0]
     property_value = properties[1]
     propery_operator = "="
     condition = '(n.{0}{1}"{2}" OR s.{0}{1}"{2}")'.format(
         property_key, propery_operator, property_value)
     conditional_query += condition
     query = 'match (n)-[r:STATE]->(s) where {0} ' \
             'AND (r.from <= {1} AND r.to > {2}) return n, s'\
         .format(conditional_query, start, end)
     graph = DiGraph()
     for id_node, state_node in self.graph_db.run(query):
         node = dict(id_node)
         state_attributes = self._unique_attribute_names(
             IDEN_PROPS, dict(state_node), node["type"])
         node.update(state_attributes)
         graph.add_node(node["name"], node)
     graph_json = json.dumps(json_graph.node_link_data(graph))
     return graph_json
コード例 #7
0
def build_component_dependency_graph(
        pipeline_definition: Dict[str, Any],
        component_definitions: Dict[str, Any]) -> DiGraph:
    """
    Builds a dependency graph between components. Dependencies are:
    - referenced components during component build time (e.g. init params)
    - predecessor components in the pipeline that produce the needed input

    This enables sorting the components in a working and meaningful order for instantiation using topological sorting.

    :param pipeline_definition: the definition of the pipeline (e.g. use get_pipeline_definition() to obtain it)
    :param component_definitions: the definition of the pipeline components (e.g. use get_component_definitions() to obtain it)
    """
    graph = DiGraph()
    for node in pipeline_definition["nodes"]:
        node_name = node["name"]
        graph.add_node(node_name)
        for input in node["inputs"]:
            if input in component_definitions:
                graph.add_edge(input, node_name)
    for component_name, component_definition in component_definitions.items():
        params = component_definition.get("params", {})
        referenced_components: List[str] = list()
        for param_value in params.values():
            # Currently we don't do any additional type validation here.
            if param_value in component_definitions:
                referenced_components.append(param_value)
        for referenced_component in referenced_components:
            graph.add_edge(referenced_component, component_name)
    return graph
コード例 #8
0
    def compute_dependent_cohorts(self, objects, deletion):
        model_map = defaultdict(list)
        n = len(objects)
        r = range(n)
        indexed_objects = zip(r, objects)

        mG = self.model_dependency_graph[deletion]

        oG = DiGraph()

        for i in r:
            oG.add_node(i)

        for v0, v1 in mG.edges():
            try:
                for i0 in range(n):
                    for i1 in range(n):
                        if i0 != i1:
                            if not deletion and self.concrete_path_exists(
                                    objects[i0], objects[i1]):
                                oG.add_edge(i0, i1)
                            elif deletion and self.concrete_path_exists(
                                    objects[i1], objects[i0]):
                                oG.add_edge(i0, i1)
            except KeyError:
                pass

        components = weakly_connected_component_subgraphs(oG)
        cohort_indexes = [reversed(topological_sort(g)) for g in components]
        cohorts = [[objects[i] for i in cohort_index]
                   for cohort_index in cohort_indexes]

        return cohorts
コード例 #9
0
def find_connected():
    for stemmer in [
            'Lancaster', 'WordNetLemmatizer', 'PorterStemmer',
            'SnowballStemmer'
    ]:
        with open('output_files/window50/%s_dice_filtered.txt' % stemmer, 'r') as sin, \
                open('output_files/window50/%s_dice_connected.txt' % stemmer, 'w') as out, \
                open('output_files/window50/%s_dice_sconnected.txt' % stemmer, 'w') as out2:
            print('building clusters for %s' % stemmer)
            g = DiGraph()
            g2 = Graph()
            nodes = set()
            edges = set()
            for line in sin:
                stemC1C2, dice = line.rstrip().split(' ')
                stem, c1, c2 = stemC1C2.split(',')
                nodes.add(stem)
                nodes.add(c1)
                nodes.add(c2)
                edges.add((stem, c1, float(dice)))
                edges.add((stem, c2, float(dice)))
                edges.add((c1, stem, float(dice)))
                edges.add((c2, stem, float(dice)))
            for n in nodes:
                g.add_node(n)
                g2.add_node(n)
            for stem, term, dice in edges:
                g.add_edge(stem, term, weight=dice)
                g2.add_edge(stem, term, weight=dice)
            for connected in sorted(nx.connected_components(g2),
                                    key=lambda s: list(s)[0]):
                out.write('%s\n' % ' '.join(connected))
            for connected in sorted(nx.strongly_connected_components(g),
                                    key=lambda s: list(s)[0]):
                out2.write('%s\n' % ' '.join(connected))
コード例 #10
0
def build_graph(alternatives, outranking, credibility=False):
    """There are some conventions to follow in this function:
    1. labels (i.e. alternatives' ids) are kept in graph's dictionary (see:
       graph.graph)
    2. aggregated nodes (only numbers, as list) are kept under 'aggr' key in
       node's dict (see: graph.nodes(data=True))
    3. weights on the edges are kept under 'weight' key in edge's dict -
       similarly as with nodes (see: graph.edges(data=True))
    """
    graph = DiGraph()  # we need directed graph for this
    # creating nodes...
    for i, alt in enumerate(alternatives):
        graph.add_node(i)
        graph.graph.update({i: alt})
    # creating edges...
    for i, alt in enumerate(alternatives):
        relations = outranking.get(alt)
        if not relations:  # if graph is built from intersectionDistillation
            continue
        for relation in relations.items():
            if relation[1] == 1.0:
                weight = credibility[alt][relation[0]] if credibility else None
                graph.add_edge(i, alternatives.index(relation[0]),
                               weight=weight)
    return graph
コード例 #11
0
    def save(self, filename: str):
        """
        Save graph to GEXF file.

        :param filename: The filename
        """
        graph = DiGraph(mode="dynamic")

        for doc_id, doc in self.documents.items():
            graph.add_node(
                doc_id,
                label=doc_id[:7],
                start=doc[0],
                end=doc[1],
                cluster=doc[3],  # [(value, start, end), ...]
                title=doc[4],
                viz={"position": {
                    "x": doc[2][0],
                    "y": doc[2][1],
                    "z": 0
                }})

            # Add edges (customer assignments in dd-CRP)
            for linked_doc_id, spells in doc[5].items():
                graph.add_edge(
                    doc_id,
                    linked_doc_id,
                    spells=spells  # [(start, end), ...]
                )

        write_gexf(graph, filename)
コード例 #12
0
def add_proposals_and_relationships_to_network(
        n: nx.DiGraph, proposals: int, funding_pool: float,
        token_supply: float) -> nx.DiGraph:
    participant_count = len(n)
    for i in range(proposals):
        j = participant_count + i
        n.add_node(j, type="proposal", conviction=0, status="candidate", age=0)

        r_rv = gamma.rvs(3, loc=0.001, scale=10000)
        n.nodes[j]['funds_requested'] = r_rv
        n.nodes[j]['trigger'] = trigger_threshold(r_rv, funding_pool,
                                                  token_supply)

        for i in range(participant_count):
            n.add_edge(i, j)
            rv = np.random.rand()
            a_rv = 1 - 4 * (1 - rv) * rv  #polarized distribution
            n.edges[(i, j)]['affinity'] = a_rv
            n.edges[(i, j)]['tokens'] = 0
            n.edges[(i, j)]['conviction'] = 0
            n.edges[(i, j)]['type'] = 'support'


# Conflict Rate is a potential variable to optimize
# Relative Influence is a potential variable to optimize
        n = initial_conflict_network(n, rate=.25)
        n = initial_social_network(n, scale=1)
    return n
コード例 #13
0
ファイル: region_identifier.py プロジェクト: yuzeming/angr
    def _abstract_acyclic_region(self,
                                 graph: networkx.DiGraph,
                                 region,
                                 frontier,
                                 dummy_endnode=None,
                                 secondary_graph=None):

        in_edges = self._region_in_edges(graph, region, data=True)
        out_edges = self._region_out_edges(graph, region, data=True)

        nodes_set = set()
        for node_ in list(region.graph.nodes()):
            nodes_set.add(node_)
            if node_ is not dummy_endnode:
                graph.remove_node(node_)

        graph.add_node(region)

        for src, _, data in in_edges:
            if src not in nodes_set:
                graph.add_edge(src, region, **data)

        for _, dst, data in out_edges:
            if dst not in nodes_set:
                graph.add_edge(region, dst, **data)

        if frontier:
            for frontier_node in frontier:
                if frontier_node is not dummy_endnode:
                    graph.add_edge(region, frontier_node)

        if secondary_graph is not None:
            self._abstract_acyclic_region(secondary_graph, region, {})
コード例 #14
0
def test_format_attributes() -> None:
    """
    Testing attribute annotation in xgmml.

    Returns:
        None

    Raises:
        AssertionError if an expected attribute type is not within the node attributes.

    """
    graph = DiGraph()
    graph.add_node('A', str_value='A', int_value=1, float_value=1.0)
    format_attribute_system_str = XGMML(graph, "graph").to_string()

    expected_attribute_type = ['integer', 'double', 'string']
    xmldoc_actual = minidom.parseString(format_attribute_system_str)
    actual_node_attribute_types = [
        _get_node_att_type(xmldoc_actual.getElementsByTagName('node')[0],
                           attribute_name=attribute)
        for attribute in ['int_value', 'float_value', 'str_value']
    ]
    while expected_attribute_type:
        attribute_type = expected_attribute_type.pop()
        assert attribute_type in actual_node_attribute_types
コード例 #15
0
def test_graph_schema_verification_throws_error_when_attributes_missing_from_stops():
    g = DiGraph()
    g.add_node('1', x=1, y=2)

    with pytest.raises(ScheduleElementGraphSchemaError) as e:
        verify_graph_schema(g)
    assert 'missing the following attributes' in str(e.value)
コード例 #16
0
ファイル: test_mapgraph.py プロジェクト: MSenden/CoCoTools
def test_remove_node():
    mock_mapp = DiGraph()
    mock_mapp.add_node('X')
    mock_mapp.add_edges_from([('A', 'B', {'TP': ['X']}),
                              ('B', 'C', {'TP': ['Y']})])
    MapGraph.remove_node.im_func(mock_mapp, 'X')
    nt.assert_equal(mock_mapp.edges(), [('B', 'C')])
コード例 #17
0
ファイル: subident.py プロジェクト: romkas/Course
def select_binary_groups(groups, root=desc.root):
    def get_bin_group(grps, bin_grps, rt, graph):
        level = grps.successors(rt)
        if not level:
            bin_grps.append(graph)
            return bin_grps
        elif len(level) == 2:
            graph.add_nodes_from(level)
            graph.add_edge(rt, level[0], grps.get_edge_data(rt, level[0]))
            graph.add_edge(rt, level[1], grps.get_edge_data(rt, level[1]))
            if grps.successors(level[0]):
                get_bin_group(grps, bin_grps, rt=level[0], graph=graph)
            else:
                get_bin_group(grps, bin_grps, rt=level[1], graph=graph)
        else:
            level.sort()
            for i in xrange(0, len(level), 2):
                g = DiGraph(graph)
                g.add_nodes_from([level[i], level[i + 1]])
                g.add_edge(rt, level[i], grps.get_edge_data(rt, level[i]))
                g.add_edge(rt, level[i + 1], grps.get_edge_data(rt, level[i + 1]))
                if grps.successors(level[i]):
                    get_bin_group(grps, bin_grps, rt=level[i], graph=g)
                else:
                    get_bin_group(grps, bin_grps, rt=level[i + 1], graph=g)

    dg = DiGraph()
    dg.add_node(root)
    bin_groups = []
    get_bin_group(groups, bin_grps=bin_groups, rt=root, graph=dg)
    return bin_groups
コード例 #18
0
ファイル: net_graph.py プロジェクト: rubiruchi/OpenWiMesh
    def add_node(self,
                 hwaddr,
                 ip=None,
                 dpid=None,
                 conn=None,
                 ports=None,
                 fdb=None,
                 t_stamp=0,
                 latency=0):
        if ports is None:
            ports = []
        if fdb is None:
            fdb = {}

        ### added timestamp and latency variables
        #DiGraph.add_node(self, hwaddr, ip=ip, dpid=dpid, conn=conn,
        #        ports=ports, fdb=fdb, name=hwaddr[12:] )
        ### added timestamp and latency variables
        DiGraph.add_node(self,
                         hwaddr,
                         ip=ip,
                         dpid=dpid,
                         conn=conn,
                         ports=ports,
                         fdb=fdb,
                         name=hwaddr[12:],
                         t_stamp=t_stamp,
                         latency=latency)

        # update time stamp
        self.time_stamp += 1
コード例 #19
0
ファイル: well-founded.py プロジェクト: vishalbelsare/clingo
def _analyze(rules: List[Rule]) -> List[List[Rule]]:
    # build rule dependency graph
    occ: Dict[Atom, Set[RuleIndex]] = {}
    dep_graph = DiGraph()
    for u, rule in enumerate(rules):
        dep_graph.add_node(u)
        for lit in rule.body:
            occ.setdefault(abs(lit), set()).add(u)

    for u, rule in enumerate(rules):
        atm, = rule.head
        for v in occ.get(atm, []):
            dep_graph.add_edge(u, v)

    sccs = list(strongly_connected_components(dep_graph))

    # build scc dependency graph
    # (this part only exists because the networkx library does not document the
    # order of components; in principle, the tarjan algorithm guarentees a
    # topological order)
    scc_rule: Dict[RuleIndex, RuleIndex] = {}
    scc_graph = DiGraph()
    for i, scc in enumerate(sccs):
        scc_graph.add_node(i)
        for u in scc:
            scc_rule[u] = i

    for i, scc in enumerate(sccs):
        for u in scc:
            for v in dep_graph[u]:
                j = scc_rule[u]
                if i != j:
                    scc_graph.add_edge(i, j)

    return [[rules[j] for j in sccs[i]] for i in topological_sort(scc_graph)]
コード例 #20
0
ファイル: duplicate.py プロジェクト: wfcommons/wfcommons
def duplicate_nodes(graph: nx.DiGraph, nodes: Set[str]) -> Dict:
    """
    Replicates nodes of a graph.

    :param graph: graph used to replicate and attach new nodes.
    :type graph: networkX DiGraph
    :param nodes: nodes to be replicated. 
    :type nodes: Set[str]. 
    
    :return: the new nodes replicated.
    :rtype: Dict[str].
    """
    new_nodes = {}
    for node in nodes:
        new_node = f"{node}_{uuid4()}"
        graph.add_node(new_node, **graph.nodes[node])
        nx.set_node_attributes(graph, {new_node: node}, "duplicate_of")
        new_nodes[node] = new_node

    for node, new_node in new_nodes.items():
        for parent, _ in graph.in_edges(node):
            if parent in new_nodes:
                graph.add_edge(new_nodes[parent], new_node)
            else:
                graph.add_edge(parent, new_node)

        for _, child in graph.out_edges(node):
            if child in new_nodes:
                graph.add_edge(new_node, new_nodes[child])
            else:
                graph.add_edge(new_node, child)

    return new_nodes
コード例 #21
0
def test_graph_schema_verification_throws_error_when_routes_missing():
    g = DiGraph()
    g.add_node('1', x=1, y=2, id='1', epsg='epsg:27700')

    with pytest.raises(ScheduleElementGraphSchemaError) as e:
        verify_graph_schema(g)
    assert 'Graph is missing `routes` attribute' in str(e.value)
コード例 #22
0
def main():
    # Create an example Boolean circuit.
    #
    # This circuit has a ∧ at the output and two ∨s at the next layer.
    # The third layer has a variable x that appears in the left ∨, a
    # variable y that appears in both the left and right ∨s, and a
    # negation for the variable z that appears as the sole node in the
    # fourth layer.
    circuit = DiGraph()
    # Layer 0
    circuit.add_node(0, label='∧')
    # Layer 1
    circuit.add_node(1, label='∨')
    circuit.add_node(2, label='∨')
    circuit.add_edge(0, 1)
    circuit.add_edge(0, 2)
    # Layer 2
    circuit.add_node(3, label='x')
    circuit.add_node(4, label='y')
    circuit.add_node(5, label='¬')
    circuit.add_edge(1, 3)
    circuit.add_edge(1, 4)
    circuit.add_edge(2, 4)
    circuit.add_edge(2, 5)
    # Layer 3
    circuit.add_node(6, label='z')
    circuit.add_edge(5, 6)
    # Convert the circuit to an equivalent formula.
    formula = circuit_to_formula(circuit)
    print(formula_to_string(formula))
コード例 #23
0
ファイル: tree_util.py プロジェクト: witvliet/CATMAID
def lazy_load_trees(skeleton_ids, node_properties):
    """ Return a lazy collection of pairs of (long, DiGraph)
    representing (skeleton_id, tree).
    The node_properties is a list of strings, each being a name of a column
    in the django model of the Treenode table that is not the treenode id, parent_id
    or skeleton_id. """

    values_list = ('id', 'parent_id', 'skeleton_id')
    props = tuple(set(node_properties) - set(values_list))
    values_list += props

    ts = Treenode.objects.filter(skeleton__in=skeleton_ids) \
            .order_by('skeleton') \
            .values_list(*values_list)
    skid = None
    tree = None
    for t in ts:
        if t[2] != skid:
            if tree:
                yield (skid, tree)
            # Prepare for the next one
            skid = t[2]
            tree = DiGraph()

        fields = {k: v for k, v in izip(props, islice(t, 3, 3 + len(props)))}
        tree.add_node(t[0], fields)

        if t[1]:
            # From child to parent
            tree.add_edge(t[0], t[1])

    if tree:
        yield (skid, tree)
コード例 #24
0
ファイル: tree_util.py プロジェクト: davidhildebrand/CATMAID
def lazy_load_trees(skeleton_ids, node_properties):
    """ Return a lazy collection of pairs of (long, DiGraph)
    representing (skeleton_id, tree).
    The node_properties is a list of strings, each being a name of a column
    in the django model of the Treenode table that is not the treenode id, parent_id
    or skeleton_id. """

    values_list = ('id', 'parent_id', 'skeleton_id')
    props = tuple(set(node_properties) - set(values_list))
    values_list += props

    ts = Treenode.objects.filter(skeleton__in=skeleton_ids) \
            .order_by('skeleton') \
            .values_list(*values_list)
    skid = None
    tree = None
    for t in ts:
        if t[2] != skid:
            if tree:
                yield (skid, tree)
            # Prepare for the next one
            skid = t[2]
            tree = DiGraph()

        fields = {k: v for k,v in izip(props, islice(t, 3, 3 + len(props)))}
        tree.add_node(t[0], fields)

        if t[1]:
            # From child to parent
            tree.add_edge(t[0], t[1])

    if tree:
        yield (skid, tree)
コード例 #25
0
 def test_get_paths_self_edge(self):
     expected = [[1]]
     graph = DiGraph()
     graph.add_node(1)
     graph.add_edge(1, 1)
     actual = get_paths(graph)
     self.assertEqual(expected, actual)
コード例 #26
0
def z_to_rz(gate: Gate) -> Optional[DiGraph]:
    if gate._gate != 'Z':
        return None
    else:
        graph = DiGraph()
        graph.add_node(Gate('RZ', gate._qubits, 'pi'))
        return graph
コード例 #27
0
ファイル: plot_circuits.py プロジェクト: jg-you/networkx
def main():
    # Create an example Boolean circuit.
    #
    # This circuit has a ∧ at the output and two ∨s at the next layer.
    # The third layer has a variable x that appears in the left ∨, a
    # variable y that appears in both the left and right ∨s, and a
    # negation for the variable z that appears as the sole node in the
    # fourth layer.
    circuit = DiGraph()
    # Layer 0
    circuit.add_node(0, label='∧')
    # Layer 1
    circuit.add_node(1, label='∨')
    circuit.add_node(2, label='∨')
    circuit.add_edge(0, 1)
    circuit.add_edge(0, 2)
    # Layer 2
    circuit.add_node(3, label='x')
    circuit.add_node(4, label='y')
    circuit.add_node(5, label='¬')
    circuit.add_edge(1, 3)
    circuit.add_edge(1, 4)
    circuit.add_edge(2, 4)
    circuit.add_edge(2, 5)
    # Layer 3
    circuit.add_node(6, label='z')
    circuit.add_edge(5, 6)
    # Convert the circuit to an equivalent formula.
    formula = circuit_to_formula(circuit)
    print(formula_to_string(formula))
コード例 #28
0
ファイル: event_loop.py プロジェクト: vpramo/xos-1
    def compute_dependent_cohorts(self, objects, deletion):
        model_map = defaultdict(list)
        n = len(objects)
        r = range(n)
        indexed_objects = zip(r, objects)

        mG = self.model_dependency_graph[deletion]

        oG = DiGraph()

        for i in r:
            oG.add_node(i)

        for v0, v1 in mG.edges():
            try:
                for i0 in range(n):
                   for i1 in range(n):
                       if i0 != i1:
                            if not deletion and self.concrete_path_exists(
                                    objects[i0], objects[i1]):
                                oG.add_edge(i0, i1)
                            elif deletion and self.concrete_path_exists(objects[i1], objects[i0]):
                                oG.add_edge(i0, i1)
            except KeyError:
                pass

        components = weakly_connected_component_subgraphs(oG)
        cohort_indexes = [reversed(topological_sort(g)) for g in components]
        cohorts = [[objects[i] for i in cohort_index]
                   for cohort_index in cohort_indexes]

        return cohorts
コード例 #29
0
ファイル: ktn.py プロジェクト: uibcdf/OpenExplorer
class KTN():

    _topology = None
    _system = None

    network = DiGraph()

    def __init__(self, topology, system):

        self._topology = topology
        self._system = system

    def reset(self):

        self.network = DiGraph()

    def add_transition(self, origin=None, end=None):

        if origin not in self.network:
            self.network.add_node(origin)

        if end in self.network[origin]:
            self.network[origin][end]['weight'] += 1
        else:
            self.network.add_edge(origin, end, weight=1)
コード例 #30
0
    def _add_node(self, g: nx.DiGraph, node: Task) -> None:  # type: ignore[override]
        """
        Recursively add a node and all of its children to a given graph.

        This function is used when creating the nx.DiGraph representation of the pipeline to add all the tasks to the
        graph. As additional information, a "fillcolor" attribute is set according to the task's status
        (see :py:attr:`~Pipeline.colormap`). This is used when creating a PNG image of the pipeline via
        :py:meth:`~DAG.plot_graph`.

        Args:
            g: Graph to add the node to
            node: Node to add

        Returns:

        """
        child: Task

        g.add_node(
            node, style="filled", fillcolor=self.colormap[node.status], label=node.name
        )

        for child in node.children:  # type: ignore
            if not g.has_node(child):
                self._add_node(g, child)
            g.add_edge(node, child)
コード例 #31
0
ファイル: region_identifier.py プロジェクト: yuzeming/angr
    def _merge_nodes(self,
                     graph: networkx.DiGraph,
                     node_a,
                     node_b,
                     force_multinode=False):  # pylint:disable=no-self-use

        in_edges = list(graph.in_edges(node_a, data=True))
        out_edges = list(graph.out_edges(node_b, data=True))

        if not force_multinode and len(in_edges) <= 1 and len(out_edges) <= 1:
            # it forms a region by itself :-)
            new_node = None

        else:
            new_node = MultiNode([node_a, node_b])

        graph.remove_node(node_a)
        graph.remove_node(node_b)

        if new_node is not None:
            graph.add_node(new_node)

            for src, _, data in in_edges:
                if src is node_b:
                    src = new_node
                graph.add_edge(src, new_node, **data)

            for _, dst, data in out_edges:
                if dst is node_a:
                    dst = new_node
                graph.add_edge(new_node, dst, **data)

        assert not node_a in graph
        assert not node_b in graph
コード例 #32
0
def _dict_to_graph(data: Dict[str, Any]) -> Tuple[DiGraph, Dict[str, int]]:
    """Convert dictionary representation of the graph to a directed graph.

    :param data: graph as a dictionary
    :return: directed graph
    """
    graph = DiGraph()
    node2id = {}
    for node, properties in data['node_list'].items():
        node2id[node] = properties['id']
        graph.add_node(int(properties['id']),
                       name=node,
                       isTarget=bool(properties['isTarget']))

    for node, adj in data['adj_list'].items():
        source = int(node)
        increases = adj.get('increases', [])
        decreases = adj.get('decreases', [])

        for n in increases:
            graph.add_edge(source, n, polarity=1)
        for n in decreases:
            graph.add_edge(source, n, polarity=-1)

    return graph, node2id
コード例 #33
0
ファイル: dump_graph.py プロジェクト: Robbt/uykfe
def dump(nodes, weighted_edges, white, black, flatten_colours,
         flatten_weights):
    graph = DiGraph()
    for node in nodes:
        graph.add_node(node.id, label=node.name)
    (min_weight, max_weight) = log_range('Weight',
                                         map(lambda we: we[0], weighted_edges))
    if flatten_colours or flatten_weights:
        flattened_weights = flatten(
            dict((weight, weight) for (weight, edge) in weighted_edges))
    for (weight, edge) in weighted_edges:
        colour = flattened_weights[weight] if flatten_colours else (
            weight - min_weight) / (max_weight - min_weight)
        weight = flattened_weights[weight] if flatten_weights else weight
        graph.add_edge(edge.from_.id,
                       edge.to_.id,
                       weight=weight,
                       viz=rgb(colour, white, black))
    #write_graphml(graph, 'uykfe.graphml')
    write_gexf(graph, 'uykfe.gexf')
    # fix namespace bug
    with open('uykfe.gexf') as input:
        xml = input.read()
    xml = xml.replace('xmlns:viz="http://www.gexf.net/1.1draft/viz" ', '', 1)
    with open('uykfe.gexf', 'w') as output:
        xml = output.write(xml)
コード例 #34
0
ファイル: model.py プロジェクト: RACECAR-GU/trafficgen-tgen
 def generate(self):
     g = DiGraph()
     g.add_node("start",
                serverport=self.tgen_port,
                loglevel="info",
                heartbeat="1 minute")
     return g
コード例 #35
0
def src_snk(pathway: nx.DiGraph,labels: pd.DataFrame,verbose=True) -> nx.DiGraph:
    """
    :pathway graph
    :labels  dataframe of labels
    :returns graph with source and sink added
    """
    pathway.add_node('SRC')
    pathway.add_node('SNK')
    #get source nodes
    try:
        sources = list(labels[labels['Node type'] == 'source']['#Node'])
    except:
        sources = list(labels[labels['node_symbol'] == 'receptor']['#node'])
    if verbose:
        print('sources: {}'.format(sources))
    for s in sources:
        pathway.add_edge('SRC',s)
    #get sink nodes
    try:
        sinks = list(labels[labels['Node type'] == 'target']['#Node'])
    except:
        sinks = list(labels[labels['node_symbol'] == 'tf']['#node'])
    if verbose:
        print('sinks: {}'.format(sinks))
    for s in sinks:
        pathway.add_edge(s,'SNK')
    return pathway
コード例 #36
0
ファイル: DAGCircuit.py プロジェクト: yellekelyk/strip
    def addCell(self, cell, gateName=None):
        mod = self.__nl.mods[self.__nl.topMod]
        yaml = self.__nl.yaml
        self.__cells.add(cell)
        name = gateName if gateName else mod.cells[cell].submodname
        if "clocks" in yaml[name]:
            self.__flops.add(cell)

        digraph.add_node(self, cell)
コード例 #37
0
def vytvořím_networkx_graf():
    from networkx import DiGraph,  write_graphml
    
    graf = DiGraph()
    graf.add_node(1,  time='5pm')
    graf.add_node(2)
    graf.add_edge(1,2,  weight=25)
    
    write_graphml(graf,  './data/networkx.graphml')
コード例 #38
0
ファイル: connection.py プロジェクト: AndreaCensi/mcdp
def get_connection_graph(names, connections):
    G = DiGraph()
    # add names to check if it is connected
    for n in names:
        G.add_node(n)
    for c in connections:
        dp1 = c.dp1
        dp2 = c.dp2
        G.add_edge(dp1, dp2)
    return G
コード例 #39
0
    def getStageGraph(self, phase):
        graph = DiGraph()

        for stage in self.structureInfo[phase][consts.STAGES_KEY].keys():
            graph.add_node(stage)
            graph.node[stage]["name"] = str(stage)

        for edge in self.structureInfo[phase][consts.STAGE_TO_STAGE_KEY]:
            graph.add_edge(edge[consts.SRC_KEY], edge[consts.DEST_KEY])

        return graph
コード例 #40
0
ファイル: subident.py プロジェクト: romkas/Course
def subgroup_identification(sample, mode,
                            a_logrank=desc.a_logrank,
                            cov_at_level=desc.cov_at_level,
                            min_sub_size=desc.min_sub_size):
    subgroups = DiGraph()
    cov_used = {key: val for key in sample.keys() for val in [False]}
    subgroups.add_node(desc.root)
    global global_counter
    global_counter = 1
    sub_ident(sample, subgroups, cov_used, a_logrank, cov_at_level, min_sub_size, mode,
              parent=desc.root, recurs_level=1)
    return subgroups
コード例 #41
0
    def createDiGraphCopy(self, geneTuples):
        copyGraph = DiGraph()
        for node in self:
            if len(self.getGenesByNode(node).intersection(geneTuples)) > 0 or len(self.getPropagatedGenesByNode(node).intersection(geneTuples)) > 0:
                copyGraph.add_node(node, {'gene':set(self.getGenesByNode(node).intersection(geneTuples)), 'propGene':set(self.getPropagatedGenesByNode(node).intersection(geneTuples)), 'pmid': set(self.getPubMedByNode(node)), 'mergeGene': set(), 'mergePMID': set(), 'mergeCount': 0, 'infoLoss': 0})

        for i in copyGraph:
            for edge in self.edge[i]:
                if edge in copyGraph:
                    copyGraph.add_edge(i, edge, self.edge[i][edge])

        return copyGraph
コード例 #42
0
ファイル: qtl.py プロジェクト: austinsherron/pedigree-linkage
    def build_allele_graph(self, num_alleles=None):
        """
        Method that builds segregation graph from the given pedigree. See the
        constructor for descriptions of parameters.

        Returns
        -------
        G : networkx.DiGraph
            NetworkX DiGraph representation of the segregation network defined
            by the given pedigree and allele assignments.  Nodes of the graph
            are named using the following conventions:
                allele node = id_parent_locus
                    ex.: 1_0_0 -> paternal allele of locus 0 for ID = 1
                    ex.: 2_1_3 -> maternal allele of locus 3 for ID = 2
                segregation node = S_parent_child_locus
                    ex.: S_1_6_1 -> segrgation indicator of parent ID = 1 
                    to child ID = 6 for locus 1
        """
        num_alleles = num_alleles if num_alleles else self.len
        G = DiGraph()

        # for each allele
        for i in range(num_alleles):
            # for each k = parent, v = [children, sex]
            for k,v in self.ped.pedigree.items():
            #for k in self.ped.ped_graph.nodes():
                # make parent nodes, one for each allele, at locus i
                G.add_node(self.mk_nd(k, 1, i))
                G.add_node(self.mk_nd(k, 0, i))

            # for each k = parent, v = [children, sex]
            for k,v in self.ped.pedigree.items():
                # for each child of k
                for c in v['cs']:
                    # determine if parent is male or female
                    type = 0 if v['sex'] == 'm' else 1 
                    # add edges from parent alleles to children alleles
                    G.add_edge(self.mk_nd(k, 1, i), self.mk_nd(c, type, i))
                    G.add_edge(self.mk_nd(k, 0, i), self.mk_nd(c, type, i))
                    # add other allele of child, just in case it's not in the graph
                    G.add_node(self.mk_nd(c, int(not type), i))
                    # add segregation node edge
                    G.add_edge(self.mk_nd('S', k, c, i), self.mk_nd(c, type, i))
                    
                    # if applicable, add edge between segregation indicators
                    if i > 0:
                        G.add_edge(self.mk_nd('S', k, c, i - 1), self.mk_nd('S', k, c, i))

        # for UAI: vars are indexed by topological sort
        self.vars = topological_sort(G)
        self.var_idxs = dict([(v,i) for i,v in enumerate(self.vars)])
        self.allele_graph = G
        return G
コード例 #43
0
ファイル: DAGCircuit.py プロジェクト: yellekelyk/strip
    def __init__(self, debug=0):
        digraph.__init__(self)

        self.__debug = debug
        self.__inputs = set()
        self.__outputs = set()
        self.__cells = set()
        self.__flops = set()
        self.__virtual = dict()  # maps name --> gate
        self.__pins = dict()
        self.__flopsIn = dict()

        # create input, output nodes
        digraph.add_node(self, "__INPUTS__")
        digraph.add_node(self, "__OUTPUTS__")
コード例 #44
0
    def _rename_nodes(self, graph):
        new_graph = DiGraph()
        #  print len(self._node_names)
        for node in graph.nodes():
            #  Add all the nodes with the names given in the data set
            new_node_name = self._node_names[node]
            new_graph.add_node(new_node_name)

        for edge in graph.edges():
            #  Add all the  with the names given in the data set
            new_source_node = self._node_names[ edge[0] ]
            new_destination_node = self._node_names[ edge[1] ]
            new_graph.add_edge(new_source_node, new_destination_node)
        new_graph.name = self._network_name
        return new_graph
コード例 #45
0
ファイル: clique_net.py プロジェクト: Liping90/dis_decribe
	def load_cliques(self,cliques):

		self.cliques=cliques

		for k in range(len(cliques)):
			DiGraph.add_node(self,k,keywords=cliques[k])
		for i in range(len(cliques)):
			for j in range(i):
				a=set(cliques[i])
				b=set(cliques[j])
				common_words=len(a.intersection(b))
				dis_i2j=common_words/len(a)
				dis_j2i=common_words/len(b)
				if dis_i2j>0:
					DiGraph.add_edge(self,i,j,weight=dis_i2j)
				if dis_j2i>0:
					DiGraph.add_edge(self,j,i,weight=dis_j2i)
コード例 #46
0
ファイル: net_graph.py プロジェクト: Brunorscc/OpenWiMesh
    def add_node(self, hwaddr, ip=None, dpid=None, conn=None, ports=None,
           fdb=None, t_stamp=0, latency=0 ):
        if ports is None:
            ports = []
        if fdb is None:
            fdb = {}

        ### added timestamp and latency variables
        #DiGraph.add_node(self, hwaddr, ip=ip, dpid=dpid, conn=conn,
        #        ports=ports, fdb=fdb, name=hwaddr[12:] )
                ### added timestamp and latency variables
        DiGraph.add_node(self, hwaddr, ip=ip, dpid=dpid, conn=conn,
                ports=ports, fdb=fdb, name=hwaddr[12:], t_stamp=t_stamp,
                latency=latency )

        # update time stamp
        self.time_stamp += 1
コード例 #47
0
ファイル: pub.py プロジェクト: llimllib/pub
def get_tasks(do_tasks, dep_graph):
    """Given a list of tasks to perform and a dependency graph, return the tasks
    that must be performed, in the correct order"""

    #XXX: Is it important that if a task has "foo" before "bar" as a dep,
    #     that foo executes before bar? Why? ATM this may not happen.

    #Each task that the user has specified gets its own execution graph
    task_graphs = []

    for task in do_tasks:
        exgraph = DiGraph()
        exgraph.add_node(task)
        _get_deps(task, exgraph, dep_graph)

        task_graphs.append(exgraph)

    return flatten(reversed(topological_sort(g)) for g in task_graphs)
コード例 #48
0
ファイル: dump_graph.py プロジェクト: Robbt/uykfe
def dump(nodes, weighted_edges, white, black, flatten_colours, flatten_weights):
    graph = DiGraph()
    for node in nodes:
        graph.add_node(node.id, label=node.name)
    (min_weight, max_weight) = log_range('Weight', map(lambda we: we[0], weighted_edges))
    if flatten_colours or flatten_weights:
        flattened_weights = flatten(dict((weight, weight) for (weight, edge) in weighted_edges))
    for (weight, edge) in weighted_edges:
        colour = flattened_weights[weight] if flatten_colours else (weight - min_weight) / (max_weight - min_weight)
        weight = flattened_weights[weight] if flatten_weights else weight
        graph.add_edge(edge.from_.id, edge.to_.id, 
                       weight=weight, 
                       viz=rgb(colour, white, black))
    #write_graphml(graph, 'uykfe.graphml')
    write_gexf(graph, 'uykfe.gexf')
    # fix namespace bug
    with open('uykfe.gexf') as input:
        xml = input.read()
    xml = xml.replace('xmlns:viz="http://www.gexf.net/1.1draft/viz" ', '', 1)
    with open('uykfe.gexf', 'w') as output:
        xml = output.write(xml)
コード例 #49
0
def build_graph(alternatives, outranking, cut_threshold):
    # There are some conventions to follow here:
    # 1. labels (i.e. alternatives' ids) are kept in graph's dictionary (see: graph.graph)
    # 2. aggregated nodes (only numbers, as list) are kept under 'aggr' key in node's
    #    dict (see: graph.nodes(data=True))
    # 3. weights on the edges are kept under 'weight' key in edge's dict - similarly as
    #    with nodes (see: graph.edges(data=True))
    graph = DiGraph()
    # creating nodes...
    for i, alternative in enumerate(alternatives):
        graph.add_node(i)
        graph.graph.update({i: alternative})
    # creating edges...
    for i, alternative in enumerate(alternatives):
        relations = outranking.get(alternative)
        if not relations:  # if graph is built from intersectionDistillation
            continue
        for relation in relations.items():
            if relation[1] >= cut_threshold:
                graph.add_edge(i, alternatives.index(relation[0]), weight=relation[1])
    return graph
コード例 #50
0
ファイル: pub.py プロジェクト: llimllib/pub
def make_dependency_graph(tasks):
    dep_graph = DiGraph()

    #build the dependency graph in two steps. First add the nodes
    for task in tasks:
        assert not dep_graph.has_node(task), "Cannot add duplicate task: %s" % task
        dep_graph.add_node(task)

    #then add the edges.
    taskdeps = [(name, task.__pub_dependencies__)
                 for name, task in tasks.iteritems()
                 if hasattr(task, "__pub_dependencies__")]
    for task, deps in taskdeps:
        for dep in deps:
            dep_graph.add_edge(task, dep)

    cycles = list(simple_cycles(dep_graph))
    if cycles:
        raise DependencyCycle("Cycle in the dependency graph: %s %s" % (dep_graph, cycles))

    return dep_graph
コード例 #51
0
ファイル: resolver.py プロジェクト: schwa/punic
    def resolve_versions(self, dependencies):
        # type: (ProjectIdentifier, Revision) -> [ProjectIdentifier, Tag]
        """Given an array of project identifier/version pairs work out the build order"""

        graph = DiGraph()
        versions_for_identifier = dict(dependencies)
        for identifier, version in dependencies:
            parent = Node(identifier, version)
            graph.add_node(parent)

            assert isinstance(version, Revision)

            dependencies_for_node = self._dependencies_for_node(Node(identifier, version))

            for dependency, _ in dependencies_for_node:
                version = versions_for_identifier[dependency]
                child = Node(dependency, version)
                graph.add_edge(parent, child)
        build_order = topological_sort(graph, reverse=True)

        return build_order
コード例 #52
0
ファイル: dbpedia.py プロジェクト: katyasosa/TSA
def _get_category_graph(skos_categories_path):
    print("Computing category graph...", end=" ")
    category_labels = _get_labels(skos_categories_path)
    g = DiGraph()
    with open(skos_categories_path) as f:
        for chunks in csv.reader(f, delimiter=" "):
            if chunks[1] == BROADER:
                source, target = chunks[0], chunks[2]
                source, target = (
                    source[source.rfind(":") + 1:-1].decode("utf-8"),
                    target[target.rfind(":") + 1:-1].decode("utf-8")
                )

                # The original relation is "broader", but for our purposes
                # "wider" is more appropriate.
                g.add_edge(category_labels[target], category_labels[source])
            elif chunks[1] == TYPE:
                source = chunks[0]
                source = source[source.rfind(":") + 1:-1].decode("utf-8")
                g.add_node(category_labels[source])
    print("done")
    return g
コード例 #53
0
ファイル: tree_util.py プロジェクト: davidhildebrand/CATMAID
def spanning_tree(tree, preserve):
    """ Return a new DiGraph with the spanning tree including the desired nodes.
    preserve: the set of nodes that delimit the spanning tree. """
    spanning = DiGraph()
    preserve = set(preserve) # duplicate, will be altered
    if 1 == len(preserve):
        spanning.add_node(iter(preserve).next())
        return spanning

    if len(tree.successors(find_root(tree))) > 1:
        tree = tree.copy()
        # First end node found
        endNode = (node for node in tree if not next(tree.successors_iter(node), None)).next()
        reroot(tree, endNode)

    n_seen = 0

    # Start from shortest sequence
    for seq in sorted(partition(tree), key=len):
        path = []
        for node in seq:
            if node in preserve:
                path.append(node)
                if node not in spanning:
                    n_seen += 1
                if len(preserve) == n_seen:
                    break
            elif path:
                path.append(node)

        if path:
            spanning.add_path(path)
            if seq[-1] == path[-1]:
                preserve.add(path[-1])

        if len(preserve) == n_seen:
            break

    return spanning
コード例 #54
0
ファイル: test_tree.py プロジェクト: arne-cl/discoursekernels
def example_invalid_subtrees():
    is1 = DiGraph()
    is1.add_node('NP-2')
    is1.add_edges_from([('D', 'the'), ('N-2', 'apple')])

    is2 = DiGraph()
    is2.add_node('D')

    is3 = DiGraph()
    is3.add_nodes_from(['D', 'N-2'])

    is4 = DiGraph()
    is4.add_edges_from([('NP-2', 'D'), ('D', 'the')])

    is5 = DiGraph()
    is5.add_nodes_from(['the'])

    is6 = DiGraph()
    is6.add_nodes_from(['the', 'apple'])

    is7 = DiGraph()
    is7.add_edges_from([('the', 'apple')])
    return [is1, is2, is3, is4, is5, is6, is7]
コード例 #55
0
ファイル: pipeline.py プロジェクト: enj/hivemind
class PipelineFramework(object):
    """A PipelineFramework is a set Tasks that may have data dependencies."""

    def __init__(self, tasks_reqs):
        """Construct a PipelineFramework based on the given Tasks and their requirements.

        A PipelineFramework is the structure of the pipeline, it contains no patient data.

        :param tasks_reqs: the Tasks and their requirements
        :type tasks_reqs: iterable of tuples, each with a Task and its list of required UIDs
        :raises: ValueError
        """
        self.dag = DiGraph()
        task_dict = {}
        for task, _ in tasks_reqs:
            if task_dict.get(task._uid) is not None:
                raise ValueError("Pipeline contains duplicate Task {}".format(task._uid))
            self.dag.add_node(task, done=False)
            task_dict[task._uid] = task

        for task, reqs in tasks_reqs:
            for req_uid in reqs:
                uid = task_dict.get(req_uid)
                if uid is None:
                    raise KeyError("Unknown UID {} set as requirement for {}".format(req_uid, task._uid))
                self.dag.add_edge(uid, task)

        if not is_directed_acyclic_graph(self.dag):
            raise ValueError("Pipeline contains a cycle.")

    def __len__(self):
        """Determine the length of the Pipeline.

        :returns: the number of Tasks in this Pipeline
        :rtype: {int}
        """
        return self.dag.__len__()
コード例 #56
0
ファイル: event_loop.py プロジェクト: opencord/xos
    def compute_dependent_cohorts(self, objects, deletion):
        n = len(objects)
        r = list(range(n))

        oG = DiGraph()

        for i in r:
            oG.add_node(i)

        try:
            for i0 in range(n):
                for i1 in range(n):
                    if i0 != i1:
                        if deletion:
                            path_args = (objects[i1], objects[i0])
                        else:
                            path_args = (objects[i0], objects[i1])

                        is_connected, edge_type = self.concrete_path_exists(*path_args)
                        if is_connected:
                            try:
                                edge_type = oG[i1][i0]["type"]
                                if edge_type == PROXY_EDGE:
                                    oG.remove_edge(i1, i0)
                                    oG.add_edge(i0, i1, type=edge_type)
                            except KeyError:
                                oG.add_edge(i0, i1, type=edge_type)
        except KeyError:
            pass

        components = weakly_connected_component_subgraphs(oG)
        cohort_indexes = [reversed(list(topological_sort(g))) for g in components]
        cohorts = [
            [objects[i] for i in cohort_index] for cohort_index in cohort_indexes
        ]

        return cohorts
コード例 #57
0
ファイル: tree_util.py プロジェクト: tomka/CATMAID
def lazy_load_trees(skeleton_ids, node_properties):
    """ Return a lazy collection of pairs of (long, DiGraph)
    representing (skeleton_id, tree).
    The node_properties is a list of strings, each being a name of a column
    in the django model of the Treenode table that is not the treenode id, parent_id
    or skeleton_id. """

    values_list = ("id", "parent_id", "skeleton_id")
    props = tuple(set(node_properties) - set(values_list))
    values_list += props

    ts = Treenode.objects.filter(skeleton__in=skeleton_ids).order_by("skeleton").values_list(*values_list)
    skid = None
    tree = None
    for t in ts:
        if t[2] != skid:
            if tree:
                yield (skid, tree)
            # Prepare for the next one
            skid = t[2]
            tree = DiGraph()

        props = {k: v for k, v in izip(props, islice(t, 3, 3 + len(props)))}

        # Hack: why doesn't django parse well the location?
        loc = props.get("location")
        if loc:
            props["location"] = Double3D(*(imap(float, loc[1:-1].split(","))))
        tree.add_node(t[0], props)

        if t[1]:
            # From child to parent
            tree.add_edge(t[0], t[1])

    if tree:
        yield (skid, tree)
コード例 #58
0
ファイル: graph.py プロジェクト: mhawthorne/antonym
class NetworkXKeyedGraph(AbstractKeyedGraph):
    
    def __init__(self):
        self.__nx_graph = DiGraph()
        self.__nodes = {}
    
    def source(self):
        return self.__nx_graph

    def add_node(self, key, **kw):
        if self.__nodes.has_key(key):
            node = self.__nodes[key]
        else:
            node = NetworkXNode(key, self.__nx_graph)
            self.__nodes[key] = node
        self.__nx_graph.add_node(node, **kw)
        return node

    def find_node_by_key(self, key):
        return self.__nodes.get(key, None)

    def iterator(self):
        class Iterator(AbstractGraphIterator):
            def __init__(self, nx_graph):
                self.__iterator = nx_graph.nodes_iter()
                
            def next(self):
                return self.__iterator.next()
                
        return Iterator(self.__nx_graph)
                
    def size(self):
        return len(self.__nx_graph)

    def __repr__(self):
        return str(dict(id=hash(self), size=self.size()))
コード例 #59
0
def generate_tgen_filetransfer_clients(servers):
    # webclients
    G = DiGraph()

    G.add_node("start", socksproxy="localhost:9000", serverport="8888", peers=servers)
    G.add_node("transfer", type="get", protocol="tcp", size="320 KiB")
    G.add_node("pause", time="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60")

    G.add_edge("start", "transfer")
    G.add_edge("transfer", "pause")
    G.add_edge("pause", "start")

    write_graphml(G, "conf/tgen.torwebclient.graphml.xml")

    # bulkclients
    G = DiGraph()

    G.add_node("start", socksproxy="localhost:9000", serverport="8888", peers=servers)
    G.add_node("transfer", type="get", protocol="tcp", size="5 MiB")

    G.add_edge("start", "transfer")
    G.add_edge("transfer", "start")

    write_graphml(G, "conf/tgen.torbulkclient.graphml.xml")