コード例 #1
0
import time

from grid_digraph_generator import GridDigraphGenerator
from networkx_graph_helper import NetworkXGraphHelper
from dreyfus_based_woc import DreyfusBasedWOC

if __name__ == '__main__':

    m = n = 10

    gh = GridDigraphGenerator()
    graph = gh.generate(m, n, edge_weighted=False)

    terminals = [88, 66, 77, 5, 33, 53, 71]
    pois = [65, 12]

    db_woc = DreyfusBasedWOC(graph)
    start_time = time.clock()
    forest, cost = db_woc.steiner_forest(terminals, pois, 4, method="Voronoi")
    elapsed_time = time.clock() - start_time

    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_nodes=[(pois, None, None), (terminals, None, None)],
                   special_subgraphs=[(forest, "#FF0000")],
                   title_1="Dreyfus-based",
                   title_2="Cost: " + str(cost) + ", Elapsed time: " +
                   str(elapsed_time),
                   edge_labels=db_woc.congestion,
                   print_edge_labels=True)
コード例 #2
0
from grid_digraph_generator import GridDigraphGenerator
from networkx_graph_helper import NetworkXGraphHelper

if __name__ == '__main__':
    gh = GridDigraphGenerator()
    graph = gh.generate(10, 10)
    subgraph = graph.extract_node_induced_subgraph(
        [4, 8, 9, 10, 34, 38, 37, 66, 35, 65, 67])
    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_subgraphs=[(subgraph, None)],
                   print_node_labels=True)
コード例 #3
0
    suitability_graph = SuitabilityGraph()
    suitability_graph.append_graph(node_weighted)

    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)

    regions = suitability_graph.get_suitable_regions(generator)

    start_time = time.clock()
    dr = DreyfusIMRV2(suitability_graph,
                      terminals,
                      contract_graph=True,
                      within_convex_hull=False)
    steiner_tree = dr.steiner_tree(consider_terminals=False)
    elapsed_time = time.clock() - start_time

    cost, node_cost = steiner_tree.compute_total_weights(terminals)

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(
        nodes_2=terminals,
        subgraphs_1=[r for _, (r, _, _, _, _, _) in regions.iteritems()],
        subgraphs_2=[steiner_tree],
        node_weight_generator=generator,
        title_1="Extended Dreyfus, seed = " + str(seed),
        title_2="Cost: " + str(cost - node_cost) + ", elapsed time: " +
        str(elapsed_time),
        print_node_labels=False,
        node_size=15,
        print_edge_labels=False)
コード例 #4
0
    req_1 = ([22, 55, 43], [27, 99])
    req_2 = ([63, 76], [35, 46])
    req_3 = ([47, 68, 97], [42, 15, 90])
    req_4 = ([64, 23], [56])
    req_5 = ([25, 75], [33])

    requests = [req_1, req_2, req_3, req_4, req_5]
    st = time.clock()
    MSTs = bpr.steiner_forest(requests)
    et = time.clock() - st

    print et

    special_subgraphs = [(MST, None) for _, (MST, cost) in MSTs.iteritems()]

    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_nodes=[(req_1[0], '#000000', 50),
                                  (req_1[1], '#000000', 100),
                                  (req_2[0], '#0000FF', 50),
                                  (req_2[1], '#0000FF', 100),
                                  (req_3[0], '#13E853', 50),
                                  (req_3[1], '#13E853', 100),
                                  (req_4[0], '#FF0000', 50),
                                  (req_4[1], '#FF0000', 100),
                                  (req_5[0], '#E67E22', 50),
                                  (req_5[1], '#E67E22', 100)],
                   special_subgraphs=special_subgraphs,
                   print_edge_labels=True,
                   edge_labels=bpr.congestion)
コード例 #5
0
    suitability_graph.append_graph(graph)

    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)

    regions = suitability_graph.get_suitable_regions(generator)

    # suitability_graph.contract_suitable_regions(generator)

    # paths = []
    # for t in terminals:
    #     _, paths_t = dijkstra(suitability_graph, t, [poi], consider_node_weights=False)
    #     paths.append(paths_t[poi])

    # _, paths_poi = suitability_graph.compute_shortest(poi, terminals)
    suitability_graph.compute_dist_paths(origins=[poi], destinations=terminals)
    paths = [
        suitability_graph.paths[tuple(sorted([t, poi]))] for t in terminals
    ]

    tree = SuitabilityGraph()
    for p in paths:
        tree.append_path(p, suitability_graph)

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(
        special_nodes=[(terminals, None, None), ([poi], None, None)],
        # subgraphs_1=[r for _, (r, _, _, _, _, _) in regions.iteritems()],
        special_subgraphs=[(tree, None)],
        print_node_labels=False)
コード例 #6
0
from grid_digraph_generator import GridDigraphGenerator
from networkx_graph_helper import NetworkXGraphHelper
from dreyfus import Dreyfus

if __name__ == '__main__':

    m = n = 10

    gh = GridDigraphGenerator()

    node_weighted = gh.generate(m, n, edge_weighted=False)

    df = Dreyfus(node_weighted)
    for v in range(m * n):
        ecc, inc = node_weighted.steiner_n_stats(3, v, df)
        print(ecc, inc)

    ngh = NetworkXGraphHelper(node_weighted)
    ngh.draw_graph(print_node_labels=True, node_size=15)
コード例 #7
0
    regions = suitability_graph.get_suitable_regions(generator)

    cap = 5
    max_dr = sys.maxint
    last_mile = sys.maxint

    hb = HotspotBased(suitability_graph, terminals, pois)
    start_time = time.clock()
    forest, cost, gr, avg_dr, num_trees, avg_or = hb.steiner_forest(
        k=cap, max_dr=max_dr, max_wd=last_mile)
    elapsed_time = time.clock() - start_time

    # cost2, _ = forest.calculate_costs()

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(nodes_1=pois,
                   nodes_2=terminals,
                   node_weight_generator=generator,
                   subgraphs_1=[
                       r for _, (r, _, _, _, _, _) in regions.iteritems()
                   ],
                   subgraphs_2=[forest],
                   title_1="Hotspot-based, seed: " + str(seed) +
                   ", Capacity: " + str(cap) + ", Max. Detour ratio: " +
                   str(max_dr) + ", Last mile: " + str(last_mile),
                   title_2="Cost: " + str(cost) + ", Gain ratio: " + str(gr) +
                   ", Avg. detour ratio: " + str(avg_dr) + ", Num. trees: " +
                   str(num_trees) + ", Avg. occ. rate: " + str(avg_or) +
                   ", elapsed time: " + str(elapsed_time),
                   print_node_labels=False,
コード例 #8
0
if __name__ == '__main__':

    m = n = 30

    gh = GridDigraphGenerator()
    graph = gh.generate(m, n, edge_weighted=False)

    np.random.seed(0)
    terminals = np.random.choice(a=m * n, size=35, replace=False)
    pois = terminals[:5]
    terminals = terminals[5:]

    vst_rs = VST_RS(graph)
    start_time = time.clock()
    forest, cost, _, _, _, _, _ = vst_rs.steiner_forest(terminals,
                                                        pois,
                                                        4,
                                                        8,
                                                        merge_users=False)
    elapsed_time = time.clock() - start_time

    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_nodes=[(pois, None, None), (terminals, None, None)],
                   special_subgraphs=[(forest, "#FF0000")],
                   title_1="VST-RS",
                   title_2="Cost: " + str(cost) + ", Elapsed, time: " +
                   str(elapsed_time),
                   edge_labels=vst_rs.load,
                   print_edge_labels=True)
コード例 #9
0
from grid_digraph_generator import GridDigraphGenerator
from steiner_forest_lp_directed import SteinerForestLPDirected
from networkx_graph_helper import NetworkXGraphHelper


if __name__ == '__main__':
    gh = GridDigraphGenerator()
    # graph = gh.generate(10, 10)
    # requests = [[27, 22, 55], [35, 63, 76]]
    graph = gh.generate(5, 5, edge_weighted=False)
    # requests = [[3, 10, 22], [16, 6, 19]]
    requests = [[21, 11, 18], [4, 3, 6]]

    sfd = SteinerForestLPDirected(graph, requests)
    forest = sfd.steiner_forest()
    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_nodes=[(requests[0], '#000000', 50)],
                   special_subgraphs=[(forest, None)],
                   print_node_labels=True)
コード例 #10
0
    gh = GridDigraphGenerator()
    graph = gh.generate(m,
                        n,
                        capacitated=True,
                        capacities_range=(1, 100),
                        edge_weighted=False,
                        node_weighted=True,
                        node_weight_generator=generator,
                        seed=seed
                        )

    # terminals = np.random.choice(a=m * n, size=8, replace=False)
    terminals = [64, 75, 56, 7, 35]
    # pois = terminals[:3]
    pois = [20, 49]
    # terminals = terminals[3:]

    mz = VST_RS(graph)
    start_time = time.clock()
    forest, cost, _, _, _, _, sts, _ = mz.steiner_forest(terminals, pois, 5, 8)
    elapsed_time = time.clock() - start_time

    special_nodes = [(terminals, '#000000', 35), (pois, '#0000FF', 65)]

    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_nodes=special_nodes,
                   # special_subgraphs=[(forest, "#FF0000")],
                   special_subgraphs=[(st[1], None) for st in sts],
                   title_1="Mustafiz's algorithm, seed = " + str(seed),
                   title_2="Cost: " + str(cost) + ", elapsed time: " + str(elapsed_time))
コード例 #11
0
        # node_weight_generator=generator,
        node_weights=node_weights,
        seed=seed)

    # pois = [634, 496, 310]
    # terminals = [696, 610, 518, 493, 583, 288, 320, 439, 187, 587, 590, 259, 200, 261]

    pois = [133]
    terminals = [220, 250, 190, 285, 461, 491]

    suitability_graph = SuitabilityGraph()
    suitability_graph.append_graph(node_weighted)

    hb = HotspotBased(suitability_graph, terminals, pois)
    start_time = time.clock()
    forest, cost, gr, avg_dr, num_trees, avg_or, avg_oc = hb.steiner_forest(
        k=5, get_lsv=False)
    elapsed_time = time.clock() - start_time
    # forest = SuitabilityDigraph()
    # cost = elapsed_time = 0

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(special_nodes=[(terminals, None, None), (pois, None, None)],
                   special_subgraphs=[(forest, None)],
                   title_1="Hotspot-based, seed = " + str(seed),
                   title_2="Cost: " + str(cost) + ", Gain ratio: " + str(gr) +
                   ", Avg. detour ratio: " + str(avg_dr) + ", Num. trees: " +
                   str(num_trees) + ", Avg. occ. rate: " + str(avg_or) +
                   ", elapsed time: " + str(elapsed_time),
                   print_node_labels=True)
コード例 #12
0
    where = set(range(m * n)).difference(occupied)
    terminals = np.random.choice(a=list(where), size=15, replace=False)
    pois_4 = terminals[:2]
    terminals_4 = terminals[2:]
    queries.append((terminals_4, pois_4))

    vst_rs = VST_RS(graph)

    start_time = time.clock()
    plans, cost, warl, mwrl, mrl1, mrl2, entropy, ni = \
        vst_rs.congestion_aware(queries, 4, 8, bpr, randomize=False, max_iter=20)
    elapsed_time = time.clock() - start_time

    print cost, warl, mwrl, elapsed_time

    ngh = NetworkXGraphHelper(graph)
    # labels = graph.get_capacities()
    # labels = {e: round(float(vst_rs.load[e]) / graph.get_capacities()[e], 2) for e in graph.get_edges()}
    labels = {e: vst_rs.load[e] for e in graph.get_edges()}

    ngh.draw_graph(
        special_subgraphs=[(plan, None) for _, plan in plans],
        special_nodes=[(terminals_1, '#000000', 25), (pois_1, '#000000', 65),
                       (terminals_2, '#0000FF', 25), (pois_2, '#0000FF', 65),
                       (terminals_3, '#13E853', 25), (pois_3, '#13E853', 65),
                       (terminals_4, '#FF0000', 25), (pois_4, '#FF0000', 65)
        ],
        edge_labels=labels,
        print_edge_labels=True,
        print_node_labels=False,
        title_1="Congestion-aware",
コード例 #13
0
    #     t_sn = list(terminals)
    #     t_sn.append(sn)
    #     t_sn_mc = suitability_graph.build_metric_closure(t_sn)
    #     mst_t_sn_mc = Prim(t_sn_mc).spanning_tree()
    #     closures_edges.update(t_sn_mc.get_edges())
    #     msts_edges.update(mst_t_sn_mc.get_edges())
    # ee = closures_edges - msts_edges
    # excluded_edges.update(ee)

    suitability_mc = suitability_graph.build_suitability_metric_closure(
        generator, terminals, excluded_edges)
    dr = Dreyfus(suitability_mc)
    st, cost = dr.steiner_tree(terminals, consider_terminals=False)
    steiner_tree = suitability_graph.build_subgraph_from_metric_closure(st)
    elapsed_time = time.clock() - start_time

    cost, node_cost = steiner_tree.compute_total_weights(terminals)

    special_subgraphs = [(r, "#00FF00")
                         for _, (r, _, _, _, _, _) in regions.iteritems()]
    special_subgraphs.append((steiner_tree, "#FF0000"))

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(special_nodes=[(terminals, None, None)],
                   special_subgraphs=special_subgraphs,
                   title_1="Dreyfus (metric closure), seed = " + str(seed),
                   title_2="Cost: " + str(cost - node_cost) +
                   ", elapsed time: " + str(elapsed_time),
                   print_node_labels=False,
                   print_edge_labels=False)
コード例 #14
0
ファイル: misc_test_1.py プロジェクト: oscarcorreag/PhD-code
    terminals = [870, 902, 776, 578, 585]

    suitability_graph = SuitabilityGraph()
    suitability_graph.append_graph(node_weighted)

    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)

    regions = suitability_graph.get_suitable_regions(generator)

    suitable_nodes = suitability_graph.get_suitable_nodes(
        generator, excluded_nodes=terminals)

    dist, _ = dijkstra(suitability_graph, terminals[0], terminals[1:])
    upper_bound = sum([dist[t] for t in terminals[1:]])

    c = []
    for s in suitable_nodes:
        dist_s, _ = dijkstra(suitability_graph, s, terminals)
        total_s = sum([dist_s[t] for t in terminals])
        if total_s <= upper_bound:
            c.append(s)

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(special_nodes=[(terminals, None, None), (c, None, None)],
                   special_subgraphs=[(r, "#00FF00")
                                      for _, (r, _, _, _, _,
                                              _) in regions.iteritems()],
                   print_node_labels=False)
コード例 #15
0
from grid_digraph_generator import GridDigraphGenerator
from steiner_tree_lp import SteinerTreeLP
from networkx_graph_helper import NetworkXGraphHelper

if __name__ == '__main__':
    gh = GridDigraphGenerator()
    graph = gh.generate(5, 5)
    terminals = []
    poi = None
    splp = SteinerTreeLP(graph, terminals, poi)
    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph()
コード例 #16
0
    while set(suitability_graph.keys()).intersection(terminals) != set(
            terminals) or set(hotspots).intersection(terminals) != set():
        terminals = np.random.choice(a=m * n, size=30, replace=False)

    pois = terminals[:3]
    terminals = terminals[3:]

    regions = suitability_graph.get_suitable_regions(generator)

    mz = VST_RS(suitability_graph)
    start_time = time.clock()
    forest, cost, gr, _, _, _, _ = mz.steiner_forest(terminals,
                                                     pois,
                                                     5,
                                                     8,
                                                     merge_users=False)
    elapsed_time = time.clock() - start_time

    # cost2, _ = forest.calculate_costs()

    special_nodes = [(terminals, '#000000', 35), (pois, '#0000FF', 65)]

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(special_nodes=special_nodes,
                   special_subgraphs=[(forest, None)],
                   title_1="Mustafiz's algorithm, seed = " + str(seed),
                   title_2="Cost: " + str(cost) + ", Gain ratio: " + str(gr) +
                   ", elapsed time: " + str(elapsed_time),
                   print_node_labels=False,
                   print_edge_labels=False)
コード例 #17
0
    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)

    hotspots = suitability_graph.get_suitable_nodes(generator)

    terminals = np.random.choice(a=m * n, size=60, replace=False)
    while set(suitability_graph.keys()).intersection(terminals) != set(
            terminals) or set(hotspots).intersection(terminals) != set():
        terminals = np.random.choice(a=m * n, size=60, replace=False)

    pois = terminals[:15]
    terminals = terminals[15:]

    regions = suitability_graph.get_suitable_regions(generator)

    hb = HotspotBased(suitability_graph, terminals, pois)
    start_time = time.clock()
    forest, cost, _, _, _, _, _ = hb.steiner_forest(clone_hotspots=True,
                                                    get_lsv=False)
    elapsed_time = time.clock() - start_time

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(special_nodes=[(pois, None, None), (terminals, None, None)],
                   special_subgraphs=[(forest, None)],
                   title_1="Hotspot-based, seed = " + str(seed),
                   title_2="Cost: " + str(cost) + ", elapsed time: " +
                   str(elapsed_time),
                   print_node_labels=False)
コード例 #18
0
    graph.append_edge_2((15, 21), weight=1, capacity=1)
    graph.append_edge_2((16, 17), weight=1, capacity=1)
    graph.append_edge_2((16, 22), weight=1, capacity=1)
    graph.append_edge_2((17, 23), weight=1, capacity=1)
    graph.append_edge_2((18, 19), weight=1, capacity=1)
    graph.append_edge_2((19, 20), weight=1, capacity=1)
    graph.append_edge_2((20, 21), weight=0.5, capacity=1)
    graph.append_edge_2((21, 22), weight=0.5, capacity=1)
    graph.append_edge_2((22, 23), weight=1, capacity=1)

    queries = [([3, 8, 14, 15], [6, 12, 10]), ([20, 21], [1, 9]),
               ([0, 5, 23], [11])]

    vst_rs = VST_RS(graph)
    # plans, cost, weighted_avg_relative_load, max_relative_load = vst_rs.non_congestion_aware(queries, 4, 8, bpr_log)
    plans, cost, warl, mwrl, mrl1, mrl2, entropy, ni = \
        vst_rs.congestion_aware(queries, 4, 8, bpr, log_history=True, randomize=False)

    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_nodes=[([3, 8, 14, 15], '#000000', 35),
                                  ([6, 12, 10], '#000000', 65),
                                  ([20, 21], '#0000FF', 35),
                                  ([1, 9], '#0000FF', 65),
                                  ([0, 5, 23], '#13E853', 35),
                                  ([11], '#13E853', 65)],
                   special_subgraphs=[(plan, None) for _, plan in plans],
                   title_2="Cost (w. congestion): " + str(round(cost, 2)),
                   edge_labels=vst_rs.load,
                   print_node_labels=True,
                   print_edge_labels=True)
コード例 #19
0
    merge_users = False
    max_iter = 50
    alpha = 1.0
    beta = 4.0

    # NCA ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    vst_rs = VST_RS(graph)
    st = time.clock()
    plans, c, warl, mwrl, mrl1, mrl2, entropy = \
        vst_rs.non_congestion_aware(queries_z, 4, 8, bpr, merge_users=merge_users, alpha=alpha, beta=beta, verbose=True)
    et = time.clock() - st

    print c, warl, mwrl, mrl1, mrl2, entropy, et

    ngh = NetworkXGraphHelper(graph)
    labels = {
        e: vst_rs.load[e]
        for e in graph.get_edges() if vst_rs.load[e] > 1
    }
    ngh.draw_graph(special_subgraphs=[(plan, None) for _, plan, _ in plans],
                   special_nodes=special,
                   edge_labels=labels,
                   print_edge_labels=True,
                   title_2="Cost: {:.2f}".format(c))

    # CA +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    vst_rs = VST_RS(graph)
    st = time.clock()
    plans, c, warl, mwrl, mrl1, mrl2, entropy, ni, list_plans = \
        vst_rs.congestion_aware(queries_z, 4, 8, bpr, merge_users=merge_users, max_iter=max_iter, alpha=alpha,
コード例 #20
0
from graph import Graph
from grid_digraph_generator import GridDigraphGenerator
from networkx_graph_helper import NetworkXGraphHelper


if __name__ == '__main__':

    gh = GridDigraphGenerator()
    graph = gh.generate(5, 5, edge_weighted=False)

    graph[18][19] = graph[19][18] = 0.5
    graph[1][6] = graph[6][1] = 0.5

    graph.compute_dist_paths()

    subtree_1 = Graph()
    subtree_1.append_path(graph.paths[(0, 12)], graph)

    subtree_2 = Graph()
    subtree_2.append_path(graph.paths[(4, 12)], graph)

    subtree_3 = Graph()
    subtree_3.append_path(graph.paths[(12, 20)], graph)

    subtree_4 = Graph()
    subtree_4.append_path(graph.paths[(12, 24)], graph)

    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_subgraphs=[(subtree_1, None), (subtree_2, None), (subtree_3, None), (subtree_4, None)],
                   print_node_labels=True)
コード例 #21
0
    weights = {v: generator.weights["VERY_SUITABLE"][0] for v in suitability_graph}
    suitability_graph.update_node_weights(weights)

    b = Baltz(suitability_graph)

    requests = [[27, 22, 55, 43], [35, 63, 76], [42, 47, 68], [56, 64, 23], [33, 25, 75]]
    st = time.clock()
    MSTs = b.steiner_forest(requests)
    et = time.clock() - st

    print et

    special_subgraphs = [(MST, None) for _, (MST, cost) in MSTs.iteritems()]

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(special_subgraphs=special_subgraphs, print_node_labels=True)

    # mz = Mustafiz(suitability_graph, [63, 76], [35], 4, sys.maxint)
    # T0, l, _, _, _, _ = mz.steiner_forest()
    # special_subgraphs = [(T0, '#000000')]
    # ngh = NetworkXGraphHelper(suitability_graph)
    # ngh.draw_graph(special_subgraphs=special_subgraphs, node_labels=True)
    #
    # mz = Mustafiz(suitability_graph, [47, 68], [42], 4, sys.maxint)
    # T1, l, _, _, _, _ = mz.steiner_forest()
    # special_subgraphs = [(T1, '#0000FF')]
    # ngh = NetworkXGraphHelper(suitability_graph)
    # ngh.draw_graph(special_subgraphs=special_subgraphs, node_labels=True)
    #
    # mz = Mustafiz(suitability_graph, [64, 23], [56], 4, sys.maxint)
コード例 #22
0
                                node_weight_generator=generator,
                                seed=seed)

    terminals = [288, 315, 231, 312, 111, 609, 645, 434, 654, 469, 186]

    suitability_graph = SuitabilityGraph()
    suitability_graph.append_graph(node_weighted)

    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)

    regions = suitability_graph.get_suitable_regions(generator)

    start_time = time.clock()
    sp = SpidersV2(graph=suitability_graph, terminals=terminals)
    steiner_tree = sp.steiner_tree()
    elapsed_time = time.clock() - start_time

    cost, node_cost = steiner_tree.compute_total_weights(terminals)

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(
        special_nodes=[(terminals, None, None)],
        # special_subgraphs=[r for _, (r, _, _) in regions.iteritems()],
        special_subgraphs=[(steiner_tree, None)],
        title_1="Spiders V2, seed = " + str(seed),
        title_2="Cost: " + str(cost - node_cost) + ", elapsed time: " +
        str(elapsed_time),
        print_node_labels=False,
        print_edge_labels=False)
コード例 #23
0
from grid_digraph_generator import GridDigraphGenerator
from graph import Graph
from networkx_graph_helper import NetworkXGraphHelper

if __name__ == '__main__':
    # graph = {'a': {'c': 14, 'd': 9, 'e': 15},
    #          'c': {'a': 14, 'f': 1},
    #          'd': {'a': 9, 'f': 11, 'g': 5, 'e': 3},
    #          'e': {'a': 15, 'd': 3, 'g': 15, 'h': 20},
    #          'f': {'c': 1, 'd': 11, 'g': 20, 'i': 1},
    #          'g': {'f': 20, 'd': 5, 'e': 15, 'h': 2, 'i': 30},
    #          'h': {'e': 20, 'g': 2, 'b': 3},
    #          'i': {'f': 1, 'g': 30, 'b': 1},
    #          'b': {'i': 1, 'h': 3}}

    gh = GridDigraphGenerator()
    graph = gh.generate(30, 30)
    terminals = [123, 464]

    distances_dual = shortest_path_dual(graph, terminals[0])

    distances, paths = shortest_path_primal(graph, terminals[0])

    ngh = NetworkXGraphHelper(graph)
    graph_path = Graph()
    graph_path.append_path(paths[terminals[1]], graph)
    ngh.draw_graph(nodes_2=terminals,
                   subgraphs_2=[graph_path],
                   title_2="Primal: " + str(distances[terminals[1]]) +
                   ", Dual: " + str(distances_dual[terminals[1]]))
コード例 #24
0
if __name__ == '__main__':

    generator = SuitableNodeWeightGenerator()

    seed = 0
    m = n = 40

    gh = GridDigraphGenerator()

    node_weighted = gh.generate(m,
                                n,
                                edge_weighted=False,
                                node_weighted=True,
                                node_weight_generator=generator,
                                seed=seed)

    terminals = [0, 90]
    poi = 55

    terminals_poi = list(terminals)
    terminals_poi.append(poi)

    suitability_graph = SuitabilityGraph()
    suitability_graph.append_graph(node_weighted)
    exclusive = suitability_graph.build_suitability_metric_closure(
        generator, terminals_poi)

    ngh = NetworkXGraphHelper(exclusive)
    ngh.draw_graph(print_node_labels=True)
コード例 #25
0
    return stats_


if __name__ == '__main__':
    # Generate the graph.
    m = n = 10
    gh = GridDigraphGenerator()
    graph = gh.generate(m, n, edge_weighted=False)
    # Setup the requests and vehicles.
    requests = [([(3, 1, 300), (27, 1, 300)], (38, 1, 300)),
                ([(12, 1, 300), (68, 1, 300), (63, 1, 300)], (55, 1, 300)),
                ([(3, 1, 300), (27, 1, 300)], (24, 1, 300))]
    vehicles = [((6, 1, 300), (29, 1, 300)), ((78, 1, 300), (54, 1, 300))]
    # CSDP-AP and plot objects.
    csdp_ap = CsdpAp(graph)
    ngh = NetworkXGraphHelper(graph)

    # ------------------------------------------------------------------------------------------------------------------
    # MILP
    # ------------------------------------------------------------------------------------------------------------------
    routes, cost = csdp_ap.solve(requests, vehicles)
    stats = compute_stats_per_driver_type(routes, graph)
    print stats
    ss = ngh.special_subgraphs_from_paths(routes)
    if routes is not None:
        ngh.draw_graph(special_nodes=[([3, 27, 12, 68, 63], None, 65),
                                      ([38, 55, 24], None, 65),
                                      ([6, 29, 78, 54], None, 65)],
                       special_subgraphs=ss,
                       title_1="MILP solution",
                       title_2="Cost: %f" % cost,
コード例 #26
0
from grid_digraph_generator import GridDigraphGenerator
from rayward_smith import RaywardSmith
from networkx_graph_helper import NetworkXGraphHelper

if __name__ == '__main__':

    gh = GridDigraphGenerator()
    graph = gh.generate(30, 30, edge_weighted=False)
    terminals = [288, 315, 231, 312, 111, 609, 645, 434, 654, 469, 186]
    # terminals = [3, 7, 9, 15]

    rs = RaywardSmith(graph, terminals)
    # steiner_tree, cost, best_nodes = rs.steiner_tree()
    rs_st = rs.steiner_tree()
    rs_cost, node_cost = rs_st.compute_total_weights(terminals)

    ngh = NetworkXGraphHelper(graph)
    ngh.draw_graph(special_nodes=[(terminals, None, None)],
                   special_subgraphs=[(rs_st, None)],
                   title_1='Rayward-Smith algorithm (network graph)',
                   title_2="Cost: " + str(rs_cost) + ", Nodes: " +
                   str(node_cost) + ", Edges: " + str(rs_cost - node_cost),
                   print_node_labels=False)
コード例 #27
0
        edge_weighted=False,
        node_weighted=True,
        # node_weight_generator=generator,
        node_weights=node_weights,
        seed=seed)

    terminals = [200, 760, 763, 766, 499]

    suitability_graph = SuitabilityGraph()
    suitability_graph.append_graph(node_weighted)

    dr = DreyfusIMR(suitability_graph,
                    terminals,
                    contract_graph=False,
                    within_convex_hull=False)
    start_time = time.clock()
    steiner_tree = dr.steiner_tree(consider_terminals=False)
    elapsed_time = time.clock() - start_time

    cost, node_cost = steiner_tree.compute_total_weights(terminals)

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(nodes_1=terminals,
                   subgraphs_2=[steiner_tree],
                   node_weight_generator=generator,
                   title_1="Extended Dreyfus, seed = " + str(seed),
                   title_2="Cost: " + str(cost) + ", elapsed time: " +
                   str(elapsed_time),
                   print_node_labels=True,
                   node_size=15)
コード例 #28
0
    #          'g': (1.1, {'f': 2, 'b': 4, 'c': 1, 'i': 3}),
    #          'h': (1.1, {'d': 1, 'i': 2}),
    #          'i': (1.4, {'f': 2, 'g': 3, 'd': 1, 'h': 2})}

    # graph = {
    #     'a': (1, {'b': 1, 'd': 1}),
    #     'b': (1, {'a': 1, 'c': 1, 'e': 1}),
    #     'c': (1, {'b': 1, 'f': 1}),
    #     'd': (1, {'a': 1, 'e': 1, 'g': 1}),
    #     'e': (1, {'d': 1, 'b': 1, 'f': 1, 'h': 1}),
    #     'f': (1, {'c': 1, 'e': 1, 'i': 1}),
    #     'g': (1, {'d': 1, 'h': 1}),
    #     'h': (1, {'g': 1, 'e': 1, 'i': 1}),
    #     'i': (1, {'h': 1, 'f': 1})
    # }

    seed = 1
    generator = SuitableNodeWeightGenerator()
    gh = GridDigraphGenerator()
    weighted_graph = gh.generate(10,
                                 10,
                                 node_weighted=True,
                                 node_weight_generator=generator,
                                 seed=seed)

    ngh = NetworkXGraphHelper(weighted_graph)
    ngh.draw_graph()

    subgraph = ngh.get_node_induced_subgraph([12, 13, 63, 84])
    print(subgraph.edges())
コード例 #29
0
    #          'g': (1.1, {'f': 2, 'b': 4, 'c': 1, 'i': 3}),
    #          'h': (1.1, {'d': 1, 'i': 2}),
    #          'i': (1.4, {'f': 2, 'g': 3, 'd': 1, 'h': 2})}
    #
    # terminals = ['b', 'c', 'e', 'h', 'i']

    seed = 6
    gh = GridDigraphGenerator()
    generator = SuitableNodeWeightGenerator()

    node_weighted = gh.generate(30,
                                30,
                                node_weighted=True,
                                node_weight_generator=generator,
                                seed=seed)

    terminals = [123, 230, 310, 464, 588, 625, 700]

    kr = KleinRavi(node_weighted, terminals)
    kr_st = kr.steiner_tree()
    kr_cost, node_cost = kr_st.compute_total_weights(terminals)

    ngh = NetworkXGraphHelper(node_weighted)
    ngh.draw_graph(
        special_nodes=[(terminals, "#0000FF", None)],
        title_1="Klein-Ravi's algorithm (node-weighted network graph), seed = "
        + str(seed),
        title_2="Cost: " + str(kr_cost) + ", Nodes: " + str(node_cost) +
        ", Edges: " + str(kr_cost - node_cost),
        print_node_labels=False)
コード例 #30
0
                                node_weighted=True,
                                node_weight_generator=generator,
                                seed=seed)

    terminals = [678, 359, 123, 456, 463, 897]

    suitability_graph = SuitabilityGraph()
    suitability_graph.append_graph(node_weighted)

    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)
    suitability_graph.extend_suitable_regions(seed, generator)

    regions = suitability_graph.get_suitable_regions(generator)

    cb = ClusterBasedV2(suitability_graph, terminals)
    start_time = time.clock()
    steiner_tree = cb.steiner_tree()
    elapsed_time = time.clock() - start_time

    ngh = NetworkXGraphHelper(suitability_graph)
    ngh.draw_graph(
        nodes_1=terminals,
        node_weight_generator=generator,
        subgraphs_1=[r for _, (r, _, _, _, _, _) in regions.iteritems()],
        subgraphs_2=[steiner_tree],
        title_2="elapsed time: " + str(elapsed_time),
        print_node_labels=True,
        node_size=15)