コード例 #1
0
    def __init__(self, features, latent_dim, encoder, decoder, deterministic_path_drop_rate=0.5):
        
        super().__init__()

        self.embedder = nn.Embedding(MAX_VALUE, features)
        self.encoder = ResidualAttentionEncoder(**encoder)
        self._latent_encoder = nn.ModuleList([
            ResidualAttentionEncoder(**encoder),
            NormalNode(features, latent_dim)]
        )
        self.z_to_c = nn.Linear(latent_dim, latent_dim*155)
        self.decoder = CondtionalResidualAttentionEncoder(**decoder)
        self.logits = FeedForwardGELU(features, MAX_VALUE)
        self.drop = nn.Dropout(deterministic_path_drop_rate)
コード例 #2
0
    def __init__(self,
                 features,
                 c_features,
                 attention_layer,
                 max_len=200,
                 n_layers=3):
        super().__init__()

        self.layers = nn.ModuleList(
            map(lambda x: AttentionLayer(**attention_layer), range(n_layers)))

        positional_encoding = position_encoding_init(max_len, features)
        self.c_layers = nn.ModuleList(
            map(lambda x: FeedForwardGELU(c_features, features * 2),
                range(n_layers)))

        self.p2x = nn.Linear(features, features * 2)
        self.register_buffer('positional_encoding', positional_encoding)
コード例 #3
0
ファイル: dx7_vae.py プロジェクト: proteanblank/NeuralDX7
    def __init__(self, features, latent_dim, encoder, decoder, num_flows=3):
        """
        features - number of features in the model
        latent_dim - the latent dimension of the model
        encoder - dictionary containing instantiation parameters for ResidualAttentionEncoder module
        decoder - dictionary containing instantiation parameters for CondtionalResidualAttentionEncoder module
        num_flows - the number of flows for the TriangularSylvesterFlow module
        """

        super().__init__()

        self.embedder = nn.Embedding(MAX_VALUE, features)
        self.encoder = ResidualAttentionEncoder(**encoder)
        self._latent_encoder = nn.ModuleList([
            ResidualAttentionEncoder(**encoder),
            TriangularSylvesterFlow(features, latent_dim, num_flows)
        ])
        self.z_to_c = nn.Linear(latent_dim, latent_dim * 155)
        self.decoder = CondtionalResidualAttentionEncoder(**decoder)
        self.logits = FeedForwardGELU(features, MAX_VALUE)

        self.n_features = features
コード例 #4
0
    def __init__(self,
                 features,
                 latent_dim,
                 encoder,
                 decoder,
                 deterministic_path_drop_rate=0.5,
                 num_flows=3):

        super().__init__()

        self.embedder = nn.Embedding(MAX_VALUE, features)
        self.encoder = ResidualAttentionEncoder(**encoder)
        self._latent_encoder = nn.ModuleList([
            ResidualAttentionEncoder(**encoder),
            TriangularSylvesterFlow(features, latent_dim, num_flows)
        ])
        self.z_to_c = nn.Linear(latent_dim, latent_dim * 155)
        self.decoder = CondtionalResidualAttentionEncoder(**decoder)
        self.logits = FeedForwardGELU(features, MAX_VALUE)

        self.drop = nn.Dropout(deterministic_path_drop_rate)
        self.n_features = features
コード例 #5
0
    def __init__(self, features, c_features, attention_layer, max_len=200, n_layers=3):
        """
        features - the number of features per parameter
        c_features - the number of side conditioning features per batch item
        attention_layer - a dictionary containing instantiation parameters for the AttentionLayer module
        max_len - the maximum needed size of the positional encodings
        n_layers - number of layers for the module to use
        """
        super().__init__()


        self.layers = nn.ModuleList(
            map(lambda x: AttentionLayer(**attention_layer), range(n_layers))
        )

        positional_encoding = position_encoding_init(max_len, features)
        self.c_layers = nn.ModuleList(
            map(lambda x: FeedForwardGELU(c_features, features*2), range(n_layers))
        )

        self.p2x = nn.Linear(features, features * 2)
        self.register_buffer('positional_encoding', positional_encoding)