コード例 #1
0
history_performance = []
training_data = tuple(load_mnist.load_training(output_nodes))
test_data = tuple(load_mnist.load_test())

for i in range(0, 100):
    scorecard = []
    network = NeuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)

    for row in training_data:
        network.train(*row)

    for row in test_data:
        correct_label = row[1]

        outputs = network.query(row[0])
        label = numpy.argmax(outputs)
        if label == correct_label:
            scorecard.append(1)
        else:
            scorecard.append(0)

    performance = sum(scorecard) / len(scorecard)
    print("ШАГ:", i, "/,", "Эффективность =", performance)
    history_performance.append(performance)

print("Средняя эффективность =", sum(history_performance) / len(history_performance))


if __name__ == "__main__":
    pass
コード例 #2
0
step_width = 0.01
x1_test = []
x2_test = []
for i in range(int(1.0 / step_width) + 1):
    x1_test.append(i * step_width)
    x2_test.append(i * step_width)

y_test = []

# go through all records in the test data set
for i in range(len(x1_test)):
    temp = []
    for j in range(len(x2_test)):
        input_list = [x1_test[i], x2_test[j]]
        # query the network
        output = neuralNetwork.query(input_list)

        # append output value
        temp.append(output[0, 0])
    # append temp to y
    y_test.append(temp)

# Visualize test result
x1_test, x2_test = np.meshgrid(x1_test, x2_test)
y_test = np.array(y_test)

fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x1_test, x2_test, y_test)
plt.title("Network output")
ax.set_xlabel('x1')
コード例 #3
0
# test the neural network

# scorecard for how well the network performs, initially empty
scorecard = []

# go through all the records in the test data set
for record in test_data_list:
    # split the record by the ',' commas
    all_values = record.split(',')
    # correct answer is first value
    correct_label = int(all_values[0])
    # scale and shift the inputs
    inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
    # query the network
    outputs = n.query(inputs)
    # the index of the highest value corresponds to the label
    label = np.argmax(outputs)
    # append correct or incorrect to list
    if (label == correct_label):
        # network's answer matches correct answer, add 1 to scorecard
        scorecard.append(1)
    else:
        # network's answer doesn't match correct answer, add 0 to scorecard
        scorecard.append(0)
        pass

    pass

# calculate the performance score, the fraction of correct answers
scorecard_array = np.asarray(scorecard)