コード例 #1
0
    print('*** Fitting with hyperparam:', hyperparam, flush=True)
    if num_durations > 0:
        surv_model.fit(X_train_std, y_train_discrete,
                       batch_size, n_epochs, verbose=True)
    else:
        surv_model.fit(X_train_std, (y_train[:, 0], y_train[:, 1]),
                       batch_size, n_epochs, verbose=True)
    surv_model.save_net(model_filename)
else:
    print('*** Loading ***', flush=True)
    surv_model.load_net(model_filename)

if num_durations > 0:
    surv_df = surv_model.interpolate(10).predict_surv_df(X_test_std)
else:
    surv_df = surv_model.predict_surv_df(X_test_std)
surv = surv_df.to_numpy().T

print()
print('[Test data statistics]')
sorted_y_test_times = np.sort(y_test[:, 0])
print('Quartiles:')
print('- Min observed time:', np.min(y_test[:, 0]))
print('- Q1 observed time:',
      sorted_y_test_times[int(0.25 * len(sorted_y_test_times))])
print('- Median observed time:', np.median(y_test[:, 0]))
print('- Q3 observed time:',
      sorted_y_test_times[int(0.75 * len(sorted_y_test_times))])
print('- Max observed time:', np.max(y_test[:, 0]))
print('Mean observed time:', np.mean(y_test[:, 0]))
print('Fraction censored:', 1. - np.mean(y_test[:, 1]))
コード例 #2
0
ファイル: bench_nks_res_basic.py プロジェクト: thutzr/dksa
                        print('Time elapsed: %f second(s)' % elapsed)
                        np.savetxt(time_elapsed_filename,
                                   np.array(elapsed).reshape(1, -1))
                        surv_model.save_net(model_filename)
                    else:
                        print('*** Loading ***', flush=True)
                        surv_model.load_net(model_filename)
                        elapsed = float(np.loadtxt(time_elapsed_filename))
                        print('Time elapsed (from previous fitting): '
                              + '%f second(s)' % elapsed)

                    if num_durations > 0:
                        surv_df = \
                            surv_model.interpolate(10).predict_surv_df(fold_X_val_std)
                    else:
                        surv_df = surv_model.predict_surv_df(fold_X_val_std)
                    ev = EvalSurv(surv_df, fold_y_val[:, 0], fold_y_val[:, 1],
                                  censor_surv='km')

                    sorted_fold_y_val = np.sort(np.unique(fold_y_val[:, 0]))
                    time_grid = np.linspace(sorted_fold_y_val[0],
                                            sorted_fold_y_val[-1], 100)

                    surv = surv_df.to_numpy().T

                    cindex_scores.append(ev.concordance_td('antolini'))
                    integrated_brier_scores.append(
                            ev.integrated_brier_score(time_grid))
                    print('  c-index (td):', cindex_scores[-1])
                    print('  Integrated Brier score:',
                          integrated_brier_scores[-1])