コード例 #1
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
 def test_returns_layer(self):
     layer = Layer(size=3,
                   prev_size=2,
                   activation=activation_functions.Rectifier)
     next_layer = layer.create_next_layer(
         size=5, activation=activation_functions.Rectifier)
     self.assertIsInstance(next_layer, Layer)
コード例 #2
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
 def test_biases_is_of_correct_type(self):
     layer = Layer(size=5,
                   prev_size=2,
                   activation=activation_functions.Sigmoid)
     biases = layer.biases()
     self.assertIsInstance(biases, np.ndarray)
     self.assertIn(biases.dtype, [np.float32, np.float64])
コード例 #3
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
 def test_weights_is_of_correct_type(self):
     layer = Layer(size=5,
                   prev_size=2,
                   activation=activation_functions.Sigmoid)
     weights = layer.weights()
     self.assertIsInstance(weights, np.ndarray)
     self.assertIn(weights.dtype, [np.float32, np.float64])
コード例 #4
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_with_single_hidden_layer(self):
        layer = Layer(size=3,
                      prev_size=2,
                      activation=activation_functions.Sigmoid)
        biases = [-2, 0.5, 9]
        layer.set_biases(biases=np.array(biases, float))

        self.assertEqual(layer.biases().tolist(), [-2, 0.5, 9])
コード例 #5
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
 def test(self):
     layer = Layer(size=1,
                   prev_size=3,
                   activation=activation_functions.Sigmoid)
     layer.randomize()
     x = np.array([1, 9, -2], float)
     a, z = layer.feed(x)
     self.assertNotEqual(a[0], 0)
コード例 #6
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_raises_exception_for_erroneous_index(self):
        layer = Layer(size=3,
                      prev_size=2,
                      activation=activation_functions.Sigmoid)

        self.assertRaises(IndexError,
                          lambda: layer.set_bias(row=3, new_value=2))
        self.assertRaises(IndexError,
                          lambda: layer.set_bias(row=30, new_value=2))
コード例 #7
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_with_single_hidden_layer(self):
        layer = Layer(size=3,
                      prev_size=2,
                      activation=activation_functions.Sigmoid)
        weights = [[0, 10], [1, 1], [-1, 0.5]]
        layer.set_weights(weights=np.array(weights, float))

        self.assertEqual(layer.weights().tolist(),
                         [[0, 10], [1, 1], [-1, 0.5]])
コード例 #8
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
 def test_feed_with_sigmoid(self):
     layer = Layer(size=2,
                   prev_size=3,
                   activation=activation_functions.Sigmoid)
     x = np.array([1, 9, 323], float)
     a, z = layer.feed(x)
     self.assertEqual(z[0], 0)
     self.assertEqual(z[1], 0)
     self.assertEqual(a[0], 0.5)
     self.assertEqual(a[1], 0.5)
コード例 #9
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_raises_exception_for_array_with_wrong_dimension(self):
        layer = Layer(size=5,
                      prev_size=2,
                      activation=activation_functions.Sigmoid)

        self.assertRaises(Layer.InvalidMatrixDimensions,
                          lambda: layer.set_biases(biases=np.zeros((2, 2))))

        self.assertRaises(Layer.InvalidMatrixDimensions,
                          lambda: layer.set_biases(biases=np.zeros((4, 3))))
コード例 #10
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_init_empty_layers(self):
        self.assertRaises(
            Layer.BadArchitecture, lambda: Layer(
                size=0, prev_size=0, activation=activation_functions.Sigmoid))

        self.assertRaises(
            Layer.BadArchitecture, lambda: Layer(
                size=1, prev_size=0, activation=activation_functions.Sigmoid))

        self.assertRaises(
            Layer.BadArchitecture, lambda: Layer(
                size=0, prev_size=1, activation=activation_functions.Sigmoid))
コード例 #11
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_created_layer_has_correct_parameters(self):
        layer = Layer(size=3,
                      prev_size=2,
                      activation=activation_functions.Rectifier)
        next_layer = layer.create_next_layer(
            size=5, activation=activation_functions.Rectifier)
        self.assertTupleEqual(next_layer.biases().shape, (5, ))
        self.assertTupleEqual(next_layer.weights().shape, (5, 3))

        next_layer = next_layer.create_next_layer(
            size=4, activation=activation_functions.Rectifier)
        self.assertTupleEqual(next_layer.biases().shape, (4, ))
        self.assertTupleEqual(next_layer.weights().shape, (4, 5))
コード例 #12
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_created_layer_has_correct_activation_function(self):
        layer = Layer(size=3,
                      prev_size=2,
                      activation=activation_functions.Rectifier)
        next_layer = layer.create_next_layer(
            size=5, activation=activation_functions.Rectifier)
        self.assertEqual(next_layer.get_activation(),
                         activation_functions.Rectifier)

        next_layer = next_layer.create_next_layer(
            size=5, activation=activation_functions.Sigmoid)
        self.assertEqual(next_layer.get_activation(),
                         activation_functions.Sigmoid)
コード例 #13
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_set_bias(self):
        layer = Layer(size=3,
                      prev_size=2,
                      activation=activation_functions.Sigmoid)
        layer.set_bias(row=0, new_value=2)
        layer.set_bias(row=1, new_value=-0.5)

        expected_b = np.array([2, -0.5, 0], float)

        self.assertEqual(layer.biases().tolist(), expected_b.tolist())
コード例 #14
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_set_weight(self):
        layer = Layer(size=2,
                      prev_size=3,
                      activation=activation_functions.Sigmoid)
        layer.set_weight(row=0, col=1, new_value=2)
        layer.set_weight(row=1, col=2, new_value=-0.5)

        expected_w = np.array([[0, 2, 0], [0, 0, -0.5]], float)

        self.assertEqual(layer.weights().tolist(), expected_w.tolist())
コード例 #15
0
    def build_network(self):
        tf.reset_default_graph()  # This is essential for doing multiple runs!!
        num_inputs = self.layer_dimensions[0]
        self.inputs = tf.placeholder(tf.float32,
                                     shape=(None, self.time_lags + 1,
                                            num_inputs),
                                     name='Input')
        input_variables = self.inputs
        input_size = num_inputs
        self.layers = []
        self.cells = []
        self.drop_cells = []
        # Build all of the modules
        #layer_size = [input, h1, h2, h3, output]
        # i er layer nr i og outsize er storrelsen paa layer nr i
        for layer_index, number_of_neurons in enumerate(
                self.layer_dimensions[1:]):
            layer = l.Layer(self, layer_index, input_variables, input_size,
                            number_of_neurons, self.time_lags)

            act_func = self.get_activation_function(layer_index)
            num_units = number_of_neurons
            self.layers.append(layer)

            cell = tf.contrib.rnn.BasicRNNCell(num_units, activation=act_func)
            if (layer_index == 0
                ):  #indicates that it is the first hidden layer
                drop_cell = tf.contrib.rnn.DropoutWrapper(
                    cell, input_keep_prob=self.keep_probability_for_dropout[0])
            else:
                drop_cell = tf.contrib.rnn.DropoutWrapper(
                    cell, input_keep_prob=self.keep_probability_for_dropout[1])

            self.cells.append(cell)
            self.drop_cells.append(drop_cell)

            #input_variables = layer.output_variables
            #input_size = layer.output_size

        multi_layer_cell = tf.contrib.rnn.MultiRNNCell(self.drop_cells)
        self.output_variables, self.states = tf.nn.dynamic_rnn(
            multi_layer_cell, self.inputs, dtype=tf.float32)
        self.targets = tf.placeholder(tf.float32,
                                      shape=(None, self.time_lags + 1,
                                             layer.output_size),
                                      name='Target')

        self.configure_learning()
コード例 #16
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
 def test_rectifier(self):
     layer = Layer(size=2,
                   prev_size=2,
                   activation=activation_functions.Sigmoid)
     layer.set_activation(activation_functions.Rectifier)
     self.assertEqual(layer.get_activation().__class__,
                      activation_functions.Rectifier.__class__)
     x = np.array([1, 9], float)
     a, z = layer.feed(x)
     self.assertEqual(a[0], 0)
     self.assertEqual(a[1], 0)
コード例 #17
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_biases_is_correct_vector(self):
        layer = Layer(size=5,
                      prev_size=2,
                      activation=activation_functions.Sigmoid)
        biases = layer.biases()
        self.assertTupleEqual(biases.shape, (5, ))

        layer = Layer(size=2,
                      prev_size=3,
                      activation=activation_functions.Sigmoid)
        biases = layer.biases()
        self.assertTupleEqual(biases.shape, (2, ))
コード例 #18
0
ファイル: layer_tests.py プロジェクト: X-rayLaser/DeepNetLib
    def test_weights_is_correct_matrix(self):
        layer = Layer(size=5,
                      prev_size=2,
                      activation=activation_functions.Sigmoid)
        weights = layer.weights()
        self.assertTupleEqual(weights.shape, (5, 2))

        layer = Layer(size=2,
                      prev_size=3,
                      activation=activation_functions.Sigmoid)
        weights = layer.weights()
        self.assertTupleEqual(weights.shape, (2, 3))