コード例 #1
0
def test_on_parameters(n_hiddenLayers, n_epochs, showCost):

    # Split data into train and test sections
    X_train, X_test, Y_train, Y_test = train_test_split(X,
                                                        Y,
                                                        test_size=test_ratio,
                                                        random_state=42)
    print(X.shape, X_train.shape, X_test.shape)
    #Train the network on train data
    params = nn.train_nn(X_train,
                         Y_train,
                         n_hiddenLayers,
                         n_epochs,
                         adaptive_lRate,
                         showCost=showCost)

    #Test neural network on test data
    A2, cache = nn.f_propagate(X_test, params)
    acc = "{:.4f}".format(nn.accuracy(A2, Y_test))
    print('Accuracy on test data: ' + acc + '%')

    #Test neural network on train data
    A2, cache = nn.f_propagate(X_train, params)
    acc = "{:.4f}".format(nn.accuracy(A2, Y_train))
    print('Accuracy on train data: ' + acc + '%')

    # #Test neural network on all data
    A2, cache = nn.f_propagate(X, params)
    acc = "{:.4f}".format(nn.accuracy(A2, Y))
    print('Accuracy on all available data: ' + acc + '%')
コード例 #2
0
def test_inc_and_dec():

    plotX = []
    plotY = []
    plotZ = []
    size = 10

    incArr = np.linspace(1, 1.1, size)
    decArr = np.linspace(0.5, 1, size)

    for inc in range(0, size):
        for dec in range(0, size):
            acc_arr = []
            adaptive_lRate = {
                'InitialRate': 0.01,
                'DecrementVar': decArr[dec],
                'IncrementVar': incArr[inc],
                'ErrorRatio': 1.04
            }
            for i in range(1, 4):

                X_train, X_test, Y_train, Y_test = train_test_split(
                    X, Y, test_size=test_ratio, random_state=randint(1, 100))
                params = nn.train_nn(X_train,
                                     Y_train,
                                     8,
                                     500,
                                     adaptive_lRate,
                                     showCost=False)

                pred_test, pred_cache = nn.f_propagate(X_test, params)
                acc_test = nn.accuracy(pred_test, Y_test)

                pred_train, train_cache = nn.f_propagate(X_train, params)
                acc_train = nn.accuracy(pred_train, Y_train)

                pred_all, all_cache = nn.f_propagate(X, params)
                acc_all = nn.accuracy(pred_all, Y)

                acc_arr.append((acc_test + acc_train + acc_all) / 3)

            plotX.append(incArr[inc])
            plotY.append(decArr[dec])
            plotZ.append(np.mean(acc_arr))  #plotZ.append(acc_test)
            print('Inc: %f - Dec: %f - Average Acc: %f' %
                  (incArr[inc], decArr[dec], np.mean(acc_arr)))

    fig = plt.figure()
    ax = Axes3D(fig)
    ax.set_xlabel('Increment')
    ax.set_ylabel('Decrement')
    ax.set_zlabel('Accuracy')
    surf = ax.plot_trisurf(plotX, plotY, plotZ, linewidth=0.1, cmap='summer')
    plt.savefig('./plots/plot.png')
    plt.show()
コード例 #3
0
def gradient_descent_fakedata():
    """
  optimizes neural network on fake datasets, used for debugging
  :return:
  """
    (x_train, y_train, l_train) = dp.generate_x_y()
    weights = np.ndarray(conf.LAYERS_NUM - 1, dtype=np.matrix)
    bias = np.ndarray(conf.LAYERS_NUM - 1, dtype=np.ndarray)
    rand_init_weights(weights, bias)
    for n in range(conf.NUM_EPOCHS):
        cost, gradients = nn.cost_derivatives(x_train, y_train, weights, bias)
        cost, gradients = nn.regularize(weights, cost, gradients)
        print("Epoch %d, Cost %f" % (n, cost))
        for l in range(conf.LAYERS_NUM - 1):
            weights[l] -= conf.LEARNING_RATE * gradients[l][:, 1:]
            bias[l] -= conf.LEARNING_RATE * np.squeeze(
                np.asarray(gradients[l][:, 0]))

    # cost from the last epoch
    cost = np.float(0)
    activations = nn.feed_forward(x_train, weights, bias)
    for i in range(0, x_train.shape[0]):
        cost += nn.cross_entropy(activations[conf.LAYERS_NUM - 1][:, i],
                                 y_train[:, i])
    cost /= x_train.shape[0]
    for n in range(1, conf.LAYERS_NUM):
        cost += conf.REG_CONST * np.sum(
            np.multiply(weights[n - 1], weights[n - 1])) / 2
    print("Epoch %d, Cost %f" % (conf.NUM_EPOCHS, cost))
    train_accuracy = nn.accuracy(x_train, l_train, weights, bias)
    print("Accuracy: %f" % train_accuracy)
コード例 #4
0
def test_range__hidden_and_epochs(hidden_start, hidden_end, hidden_step,
                                  epochs_start, epochs_end, epochs_step,
                                  iterate_n):

    plotX = []
    plotY = []
    plotZ = []
    for hidden in range(hidden_start, hidden_end + 1, hidden_step):
        for epoch in range(epochs_start, epochs_end + 1, epochs_step):
            acc_arr = []
            for i in range(1, iterate_n + 1):

                X_train, X_test, Y_train, Y_test = train_test_split(
                    X, Y, test_size=test_ratio, random_state=randint(1, 100))
                params = nn.train_nn(X_train,
                                     Y_train,
                                     hidden,
                                     epoch,
                                     const_lRate,
                                     showCost=False)

                pred_test, pred_cache = nn.f_propagate(X_test, params)
                acc_test = nn.accuracy(pred_test, Y_test)

                pred_train, train_cache = nn.f_propagate(X_train, params)
                acc_train = nn.accuracy(pred_train, Y_train)

                pred_all, all_cache = nn.f_propagate(X, params)
                acc_all = nn.accuracy(pred_all, Y)

                acc_arr.append((acc_test + acc_train + acc_all) / 3)
            plotX.append(hidden)
            plotY.append(epoch)
            plotZ.append(np.mean(acc_arr))  #plotZ.append(acc_test)
            print('Hidden: %i - Epoch: %i - Average Acc: %f' %
                  (hidden, epoch, np.mean(acc_arr)))

    fig = plt.figure()
    ax = Axes3D(fig)
    ax.set_xlabel('Neurons in hidden layer')
    ax.set_ylabel('Epochs')
    ax.set_zlabel('Accuracy')
    surf = ax.plot_trisurf(plotX, plotY, plotZ, linewidth=0.1, cmap='winter')
    plt.savefig('./plots/plot.png')
    plt.show()
コード例 #5
0
def test_adaptive_lRate():
    rateAcc = []
    singleAcc = []
    ratesArr = np.linspace(0.001, 0.2, 50)
    for i in range(0, 50):
        for j in range(1, 3):

            adaptive_lRate = {
                'InitialRate': ratesArr[i],
                'DecrementVar': 0.7,
                'IncrementVar': 1.05,
                'ErrorRatio': 1.04
            }

            X_train, X_test, Y_train, Y_test = train_test_split(
                X, Y, test_size=test_ratio, random_state=i * j)
            params = nn.train_nn(X_train,
                                 Y_train,
                                 8,
                                 500,
                                 adaptive_lRate,
                                 showCost=False)

            pred_test, pred_cache = nn.f_propagate(X_test, params)
            acc_test = nn.accuracy(pred_test, Y_test)

            pred_train, train_cache = nn.f_propagate(X_train, params)
            acc_train = nn.accuracy(pred_train, Y_train)

            pred_all, all_cache = nn.f_propagate(X, params)
            acc_all = nn.accuracy(pred_all, Y)

            singleAcc.append(np.mean([acc_test, acc_train, acc_all]))
        rateAcc.append(np.mean(singleAcc))
        print('Error rate: %f, Acc: %f' % (ratesArr[i], np.mean(singleAcc)))
        singleAcc = []

    plt.plot(ratesArr, rateAcc)
    plt.xlabel('Initial Rate')
    plt.ylabel('Accuracy')
    plt.savefig('./plots/plot.png')
    plt.show()
コード例 #6
0
def gradient_descent(weights, bias):
    """
  optimizes neural network on actual datasets
  :param weights: weights
  :param bias: bias
  :return: optimized weights and bias
  """
    x_train, y_train, x_test, y_test, l_train, l_test = dp.load_datasets()
    for n in range(conf.NUM_EPOCHS):
        cost, gradients = nn.cost_derivatives(x_train, y_train, weights, bias)
        cost, gradients = nn.regularize(weights, cost, gradients)
        if n % conf.EVAL_INTERVAL == 0:
            print("Epoch %d, Cost %f" % (n, cost))
            train_accuracy = nn.accuracy(x_train, l_train, weights, bias)
            test_accuracy = nn.accuracy(x_test, l_test, weights, bias)
            print("Train Accuracy: %f" % train_accuracy)
            print("Test Accuracy: %f" % test_accuracy)
        for l in range(conf.LAYERS_NUM - 1):
            weights[l] -= conf.LEARNING_RATE * gradients[l][:, 1:]
            bias[l] -= conf.LEARNING_RATE * np.squeeze(
                np.asarray(gradients[l][:, 0]))

    # cost from the last epoch
    cost = np.float(0)
    activations = nn.feed_forward(x_train, weights, bias)
    for i in range(0, x_train.shape[0]):
        cost += nn.cross_entropy(activations[conf.LAYERS_NUM - 1][:, i],
                                 y_train[:, i])
    cost /= x_train.shape[0]
    for n in range(1, conf.LAYERS_NUM):
        cost += conf.REG_CONST * np.sum(
            np.multiply(weights[n - 1], weights[n - 1])) / 2
    print("Epoch %d, Cost %f" % (conf.NUM_EPOCHS, cost))
    train_accuracy = nn.accuracy(x_train, l_train, weights, bias)
    test_accuracy = nn.accuracy(x_test, l_test, weights, bias)
    print("Train Accuracy: %f" % train_accuracy)
    print("Test Accuracy: %f" % test_accuracy)

    return weights, bias
コード例 #7
0
def test_params(n_hidden, n_epochs, n_iterations):
    acc_arr = []
    lowest_test = lowest_train = lowest_all = 100
    incidents = 0

    for i in range(1, n_iterations + 1):
        X_train, X_test, Y_train, Y_test = train_test_split(
            X, Y, test_size=test_ratio, random_state=i)
        params = nn.train_nn(X_train,
                             Y_train,
                             n_hidden,
                             n_epochs,
                             const_lRate,
                             showCost=False)

        pred_test, pred_cache = nn.f_propagate(X_test, params)
        acc_test = nn.accuracy(pred_test, Y_test)

        pred_train, train_cache = nn.f_propagate(X_train, params)
        acc_train = nn.accuracy(pred_train, Y_train)

        pred_all, all_cache = nn.f_propagate(X, params)
        acc_all = nn.accuracy(pred_all, Y)

        if (acc_test < lowest_test): lowest_test = acc_test
        if (acc_train < lowest_train): lowest_train = acc_train
        if (acc_all < lowest_all): lowest_all = acc_all
        if (acc_all < 90 or acc_train < 90 or acc_test < 90): incidents += 1
        acc_arr.append((acc_test + acc_train + acc_all) / 3)
        print('Iteration: %i, Test: %f, Train: %f, All: %f' %
              (i, acc_test, acc_train, acc_all))

    print('================================================')
    print(
        'Average accuracy for all iterations: %f, Number of incidents (<90 acc): %i'
        % (np.mean(acc_arr), incidents))
    print('Lowest accuracies >>> Test: %f, Train: %f, All: %f' %
          (lowest_test, lowest_train, lowest_all))
コード例 #8
0
def test_const_lRate(l_start, l_end):
    rateAcc = []
    singleAcc = []
    ratesArr = np.linspace(l_start, l_end, 100)
    for i in range(0, 100):
        for j in range(1, 5):

            X_train, X_test, Y_train, Y_test = train_test_split(
                X, Y, test_size=test_ratio, random_state=i * j)
            params = nn.train_nn(X_train,
                                 Y_train,
                                 8,
                                 500,
                                 ratesArr[i],
                                 showCost=False)

            pred_test, pred_cache = nn.f_propagate(X_test, params)
            acc_test = nn.accuracy(pred_test, Y_test)

            pred_train, train_cache = nn.f_propagate(X_train, params)
            acc_train = nn.accuracy(pred_train, Y_train)

            pred_all, all_cache = nn.f_propagate(X, params)
            acc_all = nn.accuracy(pred_all, Y)

            singleAcc.append(np.mean([acc_test, acc_train, acc_all]))
        rateAcc.append(np.mean(singleAcc))
        print('Learning_rate: %f, Acc: %f' % (ratesArr[i], np.mean(singleAcc)))
        singleAcc = []

    plt.plot(ratesArr, rateAcc)
    plt.xlabel('Learning rate')
    plt.ylabel('Accuracy')

    plt.savefig('./plots/plot.png')
    plt.show()
コード例 #9
0
def compare_rates():

    plotX = []
    plotConst = []
    plotAdapt = []

    for epoch in range(0, 400, 10):
        for j in range(1, 5):

            singleConst = []
            singleAdapt = []

            X_train, X_test, Y_train, Y_test = train_test_split(
                X, Y, test_size=test_ratio, random_state=randint(1, 100))

            params_const = nn.train_nn(X_train,
                                       Y_train,
                                       8,
                                       epoch,
                                       const_lRate,
                                       showCost=False)
            params_adapt = nn.train_nn(X_train,
                                       Y_train,
                                       8,
                                       epoch,
                                       adaptive_lRate,
                                       showCost=False)

            pred_test_const, pred_cache = nn.f_propagate(X_test, params_const)
            acc_test_const = nn.accuracy(pred_test_const, Y_test)
            pred_train_const, train_cache = nn.f_propagate(
                X_train, params_const)
            acc_train_const = nn.accuracy(pred_train_const, Y_train)
            pred_all_const, all_cache = nn.f_propagate(X, params_const)
            acc_all_const = nn.accuracy(pred_all_const, Y)

            pred_test_adapt, pred_cache = nn.f_propagate(X_test, params_adapt)
            acc_test_adapt = nn.accuracy(pred_test_adapt, Y_test)
            pred_train_adapt, train_cache = nn.f_propagate(
                X_train, params_adapt)
            acc_train_adapt = nn.accuracy(pred_train_adapt, Y_train)
            pred_all_adapt, all_cache = nn.f_propagate(X, params_adapt)
            acc_all_adapt = nn.accuracy(pred_all_adapt, Y)

            singleConst.append(
                np.mean([acc_test_const, acc_train_const, acc_all_const]))
            singleAdapt.append(
                np.mean([acc_test_adapt, acc_train_adapt, acc_all_adapt]))

        plotX.append(epoch)
        plotConst.append(np.mean(singleConst))
        plotAdapt.append(np.mean(singleAdapt))
        print('Epoch: %f, Const acc: %f, Adaptive acc: %f' %
              (epoch, np.mean(singleConst), np.mean(singleAdapt)))

    plt.plot(plotX, plotConst, label='Constant Learning Rate')
    plt.plot(plotX, plotAdapt, label='Adaptive Learning Rate')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102),
               loc='lower left',
               ncol=2,
               mode="expand",
               borderaxespad=0.)
    plt.savefig('./plots/plot.png')
    plt.show()
コード例 #10
0
        num_iterations = 56000
        learning_rate = 0.007
        layers_dims = [X_train.shape[0], 40, 20, 10, 5, 1
                       ] if args.activate == "sigmoid" else [
                           X_train.shape[0], 40, 20, 10, 5, 2
                       ]
        parameters = L_layer_model(X_train,
                                   Y_train,
                                   X_test,
                                   Y_test,
                                   layers_dims,
                                   learning_rate,
                                   num_iterations,
                                   args.activate,
                                   print_cost=args.verbose)
        with open('parameters.pkl', 'wb') as output:
            pickle.dump(parameters, output)

    elif args.model == "predict":
        try:
            fp = open("parameters.pkl", "rb")
        except Exception as e:
            print("run train model on dataset to create parameters.pkl")
            sys.exit(print("{}: {}".format(type(e).__name__, e)))

        parameters = pickle.load(fp)
        accuracy(Y_test, X_test, parameters, args.activate, "TestSet")
        accuracy(Y_train, X_train, parameters, args.activate, "TrainSet")
        X, Y = Preprocessing_predict(df, args.activate)
        accuracy(Y, X, parameters, args.activate, "All DataSet")
コード例 #11
0
X = X[rand,:]
y = y[rand]

# Since the output will be a probability for each class, we will
# put the class labels y into this format as well.  y_mat will be a
# 1797 x 10 array where each row contains a one in the appropriate class
# column and zeros in all other columns.
y_mat = neural_network.y_to_mat(y,digits['target_names'].shape[0])

# Put the cutoff between the training set and the test set at 70%.
cutoff = int(.7 * len(y))

# Initialize a neural network with 25 hidden units.
n_network = neural_network.Network(X.shape[1], 25, y_mat.shape[1])

for i in range(10):
    # Train the neural network on the training set using
    # n_iterations more iterations of conjugate gradient.
    n_iterations = 5
    n_network.learn(X[:cutoff,:], y_mat[:cutoff,:], n_iterations = n_iterations,
            lamb = .1, disp=False)
    # Measure the neural network accuracy on the test set.
    y_prob = n_network.predict(X[cutoff:,:])
    y_pred = neural_network.mat_to_y(y_prob)
    prediction_accuracy = neural_network.accuracy(y_pred, y[cutoff:])
    # Print out the predication accuracy.  Ideally, the accuracy will increase
    # on each iteration of this for loop.
    print ('{0:.2f}% accuracy on the test set after {1:2d} iterations of '
            + 'conjugate gradient.').format(
                    prediction_accuracy * 100, n_iterations * (1+i))