コード例 #1
0
ファイル: e545.py プロジェクト: tolysz/neuralnilm_prototype
def exp_d(name):
    global source
    MAX_TARGET_POWER = 2500
    source_dict_copy = deepcopy(source_dict)
    source_dict_copy.update(dict(
        logger=logging.getLogger(name),
        appliances=[
            'dish washer',
            ['fridge freezer', 'fridge', 'freezer'],
            ['washer dryer', 'washing machine'],
            'kettle',
            'HTPC'
        ],
        max_appliance_powers=[MAX_TARGET_POWER, 300, 2400, 2600, 200],
        on_power_thresholds=[5] * 5,
        min_on_durations=[1800, 60, 1800, 30, 60],
        min_off_durations=[1800, 12, 600, 1, 12],
        seq_length=2048
    ))
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(
        experiment_name=name,
        source=source,
        plotter=StartEndMeanPlotter(
            n_seq_to_plot=32, max_target_power=MAX_TARGET_POWER)
    ))
    net = Net(**net_dict_copy)
    return net
コード例 #2
0
ファイル: e545.py プロジェクト: tolysz/neuralnilm_prototype
def exp_c(name):
    global source
    MAX_TARGET_POWER = 200
    source_dict_copy = deepcopy(source_dict)
    source_dict_copy.update(dict(
        logger=logging.getLogger(name),
        appliances=[
            'HTPC',
            'dish washer',
            ['fridge freezer', 'fridge', 'freezer'],
            ['washer dryer', 'washing machine'],
            'kettle'
        ],
        max_appliance_powers=[MAX_TARGET_POWER, 2500, 300, 2400, 2600],
        on_power_thresholds=[5] * 5,
        min_on_durations=[60, 1800, 60, 1800, 30],
        min_off_durations=[12, 1800, 12, 600, 1],
        seq_length=2048
    ))
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(
        experiment_name=name,
        source=source,
        plotter=StartEndMeanPlotter(
            n_seq_to_plot=32, max_target_power=MAX_TARGET_POWER),
        learning_rate_changes_by_iteration={
            150000: 1e-4,
            275000: 1e-5
        }
    ))
    net = Net(**net_dict_copy)
    net.load_params(146758)
    return net
コード例 #3
0
ファイル: e552.py プロジェクト: tolysz/neuralnilm_prototype
def exp_a(name):
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(
        dict(experiment_name=name,
             source=multi_source,
             plotter=StartEndMeanPlotter(n_seq_to_plot=32,
                                         max_target_power=MAX_TARGET_POWER)))
    net = Net(**net_dict_copy)
    return net
コード例 #4
0
ファイル: e524.py プロジェクト: tolysz/neuralnilm_prototype
    #    loss_function=partial(scaled_cost, loss_func=mse),
    #    loss_function=ignore_inactive,
    #    loss_function=partial(scaled_cost3, ignore_inactive=False),
    #    updates_func=momentum,
    updates_func=clipped_nesterov_momentum,
    updates_kwargs={'clip_range': (0, 10)},
    learning_rate=1e-2,
    learning_rate_changes_by_iteration={
        1000: 1e-3,
        50000: 1e-4
    },
    do_save_activations=True,
    auto_reshape=False,
    #    plotter=CentralOutputPlotter
    #    plotter=Plotter(n_seq_to_plot=32)
    plotter=StartEndMeanPlotter(n_seq_to_plot=32,
                                max_target_power=MAX_TARGET_POWER))


def exp_a(name):
    # conv, conv
    global source
    source_dict_copy = deepcopy(source_dict)
    source_dict_copy.update(dict(logger=logging.getLogger(name)))
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    NUM_FILTERS = 16
    target_seq_length = source.output_shape_after_processing()[1]
    net_dict_copy['layers_config'] = [
        {
            'type': DimshuffleLayer,
コード例 #5
0
ファイル: e553.py プロジェクト: tolysz/neuralnilm_prototype
def exp_a(name):
    logger = logging.getLogger(name)
    real_appliance_source1 = RealApplianceSource(
        logger=logger,
        filename=UKDALE_FILENAME,
        appliances=[
            TARGET_APPLIANCE, ['fridge freezer', 'fridge', 'freezer'],
            'dish washer', 'kettle', ['washer dryer', 'washing machine']
        ],
        max_appliance_powers=[MAX_TARGET_POWER, 300, 2500, 2600, 2400],
        on_power_thresholds=[5] * 5,
        min_on_durations=[12, 60, 1800, 12, 1800],
        min_off_durations=[12, 12, 1800, 12, 600],
        divide_input_by_max_input_power=False,
        window_per_building=WINDOW_PER_BUILDING,
        seq_length=SEQ_LENGTH,
        output_one_appliance=True,
        train_buildings=TRAIN_BUILDINGS,
        validation_buildings=VALIDATION_BUILDINGS,
        n_seq_per_batch=N_SEQ_PER_BATCH,
        skip_probability=0.75,
        skip_probability_for_first_appliance=SKIP_PROBABILITY_FOR_TARGET,
        target_is_start_and_end_and_mean=True,
        standardise_input=True,
        input_stats=INPUT_STATS,
        independently_center_inputs=INDEPENDENTLY_CENTER_INPUTS)

    same_location_source1 = SameLocation(
        logger=logger,
        filename=UKDALE_FILENAME,
        target_appliance=TARGET_APPLIANCE,
        window_per_building=WINDOW_PER_BUILDING,
        seq_length=SEQ_LENGTH,
        train_buildings=TRAIN_BUILDINGS,
        validation_buildings=VALIDATION_BUILDINGS,
        n_seq_per_batch=N_SEQ_PER_BATCH,
        skip_probability=SKIP_PROBABILITY_FOR_TARGET,
        target_is_start_and_end_and_mean=True,
        standardise_input=True,
        offset_probability=1,
        divide_target_by=MAX_TARGET_POWER,
        input_stats=INPUT_STATS,
        independently_center_inputs=INDEPENDENTLY_CENTER_INPUTS)

    multi_source = MultiSource(sources=[{
        'source': real_appliance_source1,
        'train_probability': 0.5,
        'validation_probability': 0
    }, {
        'source': same_location_source1,
        'train_probability': 0.5,
        'validation_probability': 1
    }],
                               standardisation_source=same_location_source1)

    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(
        dict(experiment_name=name,
             source=multi_source,
             plotter=StartEndMeanPlotter(n_seq_to_plot=32,
                                         n_training_examples_to_plot=16,
                                         max_target_power=MAX_TARGET_POWER)))
    net = Net(**net_dict_copy)
    net.load_params(730532)
    return net
コード例 #6
0
ファイル: e506.py プロジェクト: tolysz/neuralnilm_prototype
    #    loss_function=partial(scaled_cost, loss_func=mse),
    #    loss_function=ignore_inactive,
    #    loss_function=partial(scaled_cost3, ignore_inactive=False),
    #    updates_func=momentum,
    updates_func=clipped_nesterov_momentum,
    updates_kwargs={'clip_range': (0, 10)},
    learning_rate=1e-2,
    learning_rate_changes_by_iteration={
        1000: 1e-3,
        5000: 1e-4
    },
    do_save_activations=True,
    auto_reshape=False,
    #    plotter=CentralOutputPlotter
    #    plotter=Plotter(n_seq_to_plot=32)
    plotter=StartEndMeanPlotter())


def exp_a(name, target_appliance, seq_length):
    global source
    source_dict_copy = deepcopy(source_dict)
    source_dict_copy.update(
        dict(target_appliance=target_appliance,
             logger=logging.getLogger(name),
             seq_length=seq_length))
    source = SameLocation(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    NUM_FILTERS = 4
    target_seq_length = source.output_shape_after_processing()[1]
    net_dict_copy['layers_config'] = [
コード例 #7
0
def net_dict_rectangles(seq_length):
    return dict(
        epochs=300000,
        save_plot_interval=25000,
        loss_function=lambda x, t: squared_error(x, t).mean(),
        updates_func=nesterov_momentum,
        learning_rate=1e-4,
        learning_rate_changes_by_iteration={
            200000: 1e-5,
            250000: 1e-6
        },
        epoch_callbacks={350000: only_train_on_real_data},
        do_save_activations=True,
        auto_reshape=False,
        plotter=StartEndMeanPlotter(n_seq_to_plot=32,
                                    n_training_examples_to_plot=16),
        layers_config=[
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # (batch, features, time)
            },
            {
                'type': PadLayer,
                'width': 4
            },
            {
                'type': Conv1DLayer,  # convolve over the time axis
                'num_filters': 16,
                'filter_size': 4,
                'stride': 1,
                'nonlinearity': None,
                'border_mode': 'valid'
            },
            {
                'type': Conv1DLayer,  # convolve over the time axis
                'num_filters': 16,
                'filter_size': 4,
                'stride': 1,
                'nonlinearity': None,
                'border_mode': 'valid'
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # back to (batch, time, features)
            },
            {
                'type': DenseLayer,
                'num_units': 512 * 8,
                'nonlinearity': rectify
            },
            # {
            #     'type': DenseLayer,
            #     'num_units': 512 * 6,
            #     'nonlinearity': rectify
            # },
            {
                'type': DenseLayer,
                'num_units': 512 * 4,
                'nonlinearity': rectify
            },
            {
                'type': DenseLayer,
                'num_units': 512,
                'nonlinearity': rectify
            },
            {
                'type': DenseLayer,
                'num_units': 3,
                'nonlinearity': None
            }
        ])