from neuroanalysis.fitting import Psp from neuroanalysis.ui.fitting import FitExplorer pg.mkQApp() pg.dbg() # Load PSP data from the test_data repository if len(sys.argv) == 1: data_file = 'test_data/test_psp_fit/1485904693.10_8_2NOTstacked.json' else: data_file = sys.argv[1] data = json.load(open(data_file)) y = np.array(data['input']['data']) x = np.arange(len(y)) * data['input']['dt'] psp = Psp() params = OrderedDict([ ('xoffset', (10e-3, 10e-3, 15e-3)), ('yoffset', 0), ('amp', 0.1e-3), ('rise_time', (2e-3, 500e-6, 10e-3)), ('decay_tau', (4e-3, 1e-3, 50e-3)), ('rise_power', (2.0, 'fixed')), ]) fit = psp.fit(y, x=x, xtol=1e-3, maxfev=100, params=params) x = FitExplorer(fit=fit) x.show()
import numpy as np import pyqtgraph as pg from collections import OrderedDict from neuroanalysis.fitting import Psp from neuroanalysis.ui.fitting import FitExplorer pg.mkQApp() data = np.loadtxt('psp.csv', delimiter=',', skiprows=1, usecols=[0, 1]) x = data[:, 0] y = data[:, 1] psp = Psp() params = OrderedDict([ ('xoffset', (2e-3, 5e-4, 5e-3)), ('yoffset', 0), ('amp', 10e-12), ('rise_time', (2e-3, 50e-6, 10e-3)), ('decay_tau', (4e-3, 500e-6, 50e-3)), ('rise_power', (2.0, 'fixed')), ]) fit = psp.fit(y * 1e12, x=x, xtol=1e-3, maxfev=100, **params) x = FitExplorer(fit=fit) x.show()