def cx_component(graph): #lpu lists lpu_name_list = ['BU', 'bu', 'EB', 'FB', 'PB'] lpu_name_to_node = {} # LPU name -> pyorient LPU node lpu_name_to_g_na = {} # LPU name -> NeuroArch-compatible graph lpu_name_to_g_nk_orig = {} # LPU name -> Neurokernel-compatible graph lpu_name_to_g_nk = {} # LPU name -> Neurokernel-compatible graph with int IDs #lpu_name_to_n_dict = {} # LPU name -> n_dict data struct #lpu_name_to_s_dict = {} # LPU name -> s_dict data struct lpu_name_to_comp_dict = {} # LPU name -> comp_dict data struct lpu_name_to_conn_list = {} # LPU name -> conn_list data struct for name in lpu_name_list: lpu_name_to_node[name] = graph.LPUs.query(name=name).one() lpu_name_to_g_na[name] = lpu_name_to_node[name].traverse_owns(max_levels = 2).get_as('nx') lpu_name_to_g_nk_orig[name] = nk.na_lpu_to_nk_new(lpu_name_to_g_na[name]) lpu_name_to_g_nk[name] = nx.convert_node_labels_to_integers(lpu_name_to_g_nk_orig[name], ordering = 'sorted') lpu_name_to_g_nk[name] = \ partly_relabel_by_sorted_attr(lpu_name_to_g_nk[name], 'model', ['LeakyIAF'], 'name') #lpu_name_to_n_dict[name], lpu_name_to_s_dict[name] = LPU.graph_to_dicts(lpu_name_to_g_nk[name]) lpu_name_to_comp_dict[name], lpu_name_to_conn_list[name] = LPU.graph_to_dicts(lpu_name_to_g_nk[name]) nx.write_gexf(lpu_name_to_g_nk[name], name+'.gexf.gz') # Patterns: pat_name_list = [n.name for n in graph.Patterns.query().all()] pat_name_to_node = {} # LPU pair -> pyorient Pattern node pat_name_to_g_na = {} # LPU pair -> NeuroArch-compatible graph pat_name_to_g_nk = {} # LPU pair -> Neurokernel-compatible graph pat_name_to_pat = {} # LPU pair -> Pattern class instance for name in pat_name_list: pat_name_to_node[name] = graph.Patterns.query(name=name).one() pat_name_to_g_na[name] = pat_name_to_node[name].traverse_owns(max_levels = 2).get_as('nx') pat_name_to_g_nk[name] = nk.na_pat_to_nk(pat_name_to_g_na[name]) pat_name_to_pat[name] = Pattern.Pattern.from_graph(nx.DiGraph(pat_name_to_g_nk[name])) return lpu_name_to_comp_dict, lpu_name_to_conn_list, pat_name_list, pat_name_to_pat
lpu_name_to_comp_dict[name], lpu_name_to_conn_list[ name] = LPU.graph_to_dicts(lpu_name_to_g_nk[name]) # Patterns: pat_name_list = [n.name for n in graph.Patterns.query().all()] pat_name_to_node = {} # LPU pair -> pyorient Pattern node pat_name_to_g_na = {} # LPU pair -> NeuroArch-compatible graph pat_name_to_g_nk = {} # LPU pair -> Neurokernel-compatible graph pat_name_to_pat = {} # LPU pair -> Pattern class instance for name in pat_name_list: pat_name_to_node[name] = graph.Patterns.query(name=name).one() pat_name_to_g_na[name] = pat_name_to_node[name].traverse_owns( max_levels=2).get_as('nx') pat_name_to_g_nk[name] = nk.na_pat_to_nk(pat_name_to_g_na[name]) pat_name_to_pat[name] = pattern.Pattern.from_graph( nx.DiGraph(pat_name_to_g_nk[name])) man = core.Manager() dt = 1e-4 dur = 0.2 steps = int(dur / dt) debug = False for name in lpu_name_list: if name in ['BU', 'bu', 'PB']: #in_file_name = '%s_input.h5' % name input_processor = [FileInputProcessor('{}_input.h5'.format(name))] else:
def launch(self, user_id, task): neuron_uid_list = [str(a) for a in task['neuron_list']] conf_obj = get_config_obj() config = conf_obj.conf if config['Retina']['intype'] == 'Natural': coord_file = config['InputType']['Natural']['coord_file'] tmp = os.path.splitext(coord_file) config['InputType']['Natural']['coord_file'] = '{}_{}{}'.format( tmp[0], user_id, tmp[1]) setup_logger(file_name='neurokernel_' + user_id + '.log', screen=False) manager = core.Manager() lpus = {} patterns = {} G = task['success']['data'] # get graph and output_uid_list for each LPU for k, lpu in G['LPU'].iteritems(): lpus[k] = {} g_lpu_na = create_graph_from_database_returned(lpu) lpu_nk_graph = nk.na_lpu_to_nk_new(g_lpu_na) lpus[k]['graph'] = lpu_nk_graph lpus[k]['output_uid_list'] = list( set(lpu_nk_graph.nodes()).intersection(set(neuron_uid_list))) lpus[k]['output_file'] = '{}_output_{}.h5'.format(k, user_id) # get graph for each Pattern for k, pat in G['Pattern'].iteritems(): l1, l2 = k.split('-') if l1 in lpus and l2 in lpus: g_pattern_na = create_graph_from_database_returned(pat) pattern_nk = nk.na_pat_to_nk(g_pattern_na) lpu_ports = [node[1]['selector'] \ for node in lpus[l1]['graph'].nodes(data=True) \ if node[1]['class']=='Port'] + \ [node[1]['selector'] \ for node in lpus[l2]['graph'].nodes(data=True) \ if node[1]['class']=='Port'] pattern_ports = pattern_nk.nodes() patterns[k] = {} patterns[k]['graph'] = pattern_nk.subgraph( list(set(lpu_ports).intersection(set(pattern_ports)))) dt = config['General']['dt'] # add LPUs to manager for k, lpu in lpus.iteritems(): graph = lpu['graph'] if k == 'retina': prs = [node for node in graph.nodes(data=True) \ if node[1]['class'] == 'PhotoreceptorModel'] for pr in prs: graph.node[pr[0]]['num_microvilli'] = 3000 input_processors = [ RetinaInputIndividual(config, prs, user_id) ] extra_comps = [PhotoreceptorModel] retina_input_uids = [a[0] for a in prs] else: input_processors = [] extra_comps = [BufferVoltage] output_processor = FileOutputProcessor( [('V', lpu['output_uid_list'])], lpu['output_file'], sample_interval=10) (comp_dict, conns) = LPU.graph_to_dicts(graph) manager.add(LPU, k, dt, comp_dict, conns, device=0, input_processors=input_processors, output_processors=[output_processor], extra_comps=extra_comps) # connect LPUs by Patterns for k, pattern in patterns.iteritems(): l1, l2 = k.split('-') if l1 in lpus and l2 in lpus: print('Connecting {} and {}'.format(l1, l2)) pat, key_order = Pattern.from_graph( nx.DiGraph(pattern['graph'])) with Timer('update of connections in Manager'): manager.connect(l1, l2, pat, int_0=key_order.index(l1), int_1=key_order.index(l2)) # start simulation steps = config['General']['steps'] ignored_steps = config['General']['ignored_steps'] manager.spawn() manager.start(steps=steps) manager.wait() time.sleep(5) # post-processing inputs (hard coded, can be better organized) inputs = { u'ydomain': 1.0, u'xdomain': dt * (steps - ignored_steps), u'dt': dt * 10, u'data': {} } if 'retina' in lpus: input_array = si.read_array('{}_{}.h5'.format( config['Retina']['input_file'], user_id)) inputs[u'ydomain'] = input_array.max() for i, item in enumerate(retina_input_uids): inputs['data'][item] = np.hstack( (np.arange(int((steps - ignored_steps) / 10)).reshape( (-1, 1)) * dt * 10, input_array[ignored_steps::10, i:i + 1])).tolist() del input_array # post-processing outputs from all LPUs and combine them into one dictionary result = { u'ydomain': 1, u'xdomain': dt * (steps - ignored_steps), u'dt': dt * 10, u'data': {} } for k, lpu in lpus.iteritems(): with h5py.File(lpu['output_file']) as output_file: uids = output_file['V']['uids'][:] output_array = output_file['V']['data'][:] for i, item in enumerate(uids): output = output_array[int(ignored_steps / 10):, i:i + 1] tmp = output.max() - output.min() if tmp <= 0.01: #mV output = (output - output.min()) + 0.5 else: output = (output - output.min()) / tmp * 0.9 + 0.1 result['data'][item] = np.hstack( (np.arange(int((steps - ignored_steps) / 10)).reshape( (-1, 1)) * dt * 10, output)).tolist() return inputs, result
def launch(self, user_id, task): neuron_uid_list = [str(a) for a in task['neuron_list']] conf_obj = get_config_obj() config = conf_obj.conf if config['Retina']['intype'] == 'Natural': coord_file = config['InputType']['Natural']['coord_file'] tmp = os.path.splitext(coord_file) config['InputType']['Natural']['coord_file'] = '{}_{}{}'.format( tmp[0], user_id, tmp[1]) setup_logger(file_name='neurokernel_' + user_id + '.log', screen=True) manager = core.Manager() lpus = {} patterns = {} G = task['data'] with open('G.pickle', 'wb') as f: pickle.dump(G, f, protocol=pickle.HIGHEST_PROTOCOL) print(G) print(G.keys()) print(G['LPU']) print(G['LPU'].keys()) # get graph and output_uid_list for each LPU for k, lpu in G['LPU'].items(): lpus[k] = {} g_lpu_na = create_graph_from_database_returned(lpu) lpu_nk_graph = nk.na_lpu_to_nk_new(g_lpu_na) lpus[k]['graph'] = lpu_nk_graph lpus[k]['output_uid_list'] = list( set(lpu_nk_graph.nodes()).intersection(set(neuron_uid_list))) lpus[k]['output_file'] = '{}_output_{}.h5'.format(k, user_id) for kkey, lpu in lpus.items(): graph = lpu['graph'] for uid, comp in graph.node.items(): if 'attr_dict' in comp: print('Found attr_dict; fixing...') nx.set_node_attributes(graph, {uid: comp['attr_dict']}) # print('changed',uid) graph.nodes[uid].pop('attr_dict') for i, j, k, v in graph.edges(keys=True, data=True): if 'attr_dict' in v: for key in v['attr_dict']: nx.set_edge_attributes( graph, {(i, j, k): { key: v['attr_dict'][key] }}) graph.edges[(i, j, k)].pop('attr_dict') lpus[kkey]['graph'] = graph # get graph for each Pattern for k, pat in G['Pattern'].items(): l1, l2 = k.split('-') if l1 in lpus and l2 in lpus: g_pattern_na = create_graph_from_database_returned(pat) pattern_nk = nk.na_pat_to_nk(g_pattern_na) print(lpus[l1]['graph'].nodes(data=True)) lpu_ports = [node[1]['selector'] \ for node in lpus[l1]['graph'].nodes(data=True) \ if node[1]['class']=='Port'] + \ [node[1]['selector'] \ for node in lpus[l2]['graph'].nodes(data=True) \ if node[1]['class']=='Port'] pattern_ports = pattern_nk.nodes() patterns[k] = {} patterns[k]['graph'] = pattern_nk.subgraph( list(set(lpu_ports).intersection(set(pattern_ports)))) dt = config['General']['dt'] if 'dt' in task: dt = task['dt'] print(dt) # add LPUs to manager for k, lpu in lpus.items(): lpu_name = k graph = lpu['graph'] for uid, comp in graph.node.items(): if 'attr_dict' in comp: nx.set_node_attributes(graph, {uid: comp['attr_dict']}) # print('changed',uid) graph.nodes[uid].pop('attr_dict') for i, j, ko, v in graph.edges(keys=True, data=True): if 'attr_dict' in v: for key in v['attr_dict']: nx.set_edge_attributes( graph, {(i, j, ko): { key: v['attr_dict'][key] }}) graph.edges[(i, j, ko)].pop('attr_dict') nx.write_gexf(graph, 'name.gexf') with open(lpu_name + '.pickle', 'wb') as f: pickle.dump(graph, f, protocol=pickle.HIGHEST_PROTOCOL) comps = graph.node.items() #for uid, comp in comps: # if 'attr_dict' in comp: # nx.set_node_attributes(graph, {uid: comp['attr_dict']}) # print('changed',uid) # if 'class' in comp: if k == 'retina': prs = [node for node in graph.nodes(data=True) \ if node[1]['class'] == 'PhotoreceptorModel'] for pr in prs: graph.node[pr[0]]['num_microvilli'] = 3000 input_processors = [ RetinaInputIndividual(config, prs, user_id) ] extra_comps = [PhotoreceptorModel] retina_input_uids = [a[0] for a in prs] elif k == 'EB': input_processor = StepInputProcessor('I', [node[0] for node in graph.nodes(data=True) \ if node[1]['class'] == 'LeakyIAF'], 40.0, 0.0, 1.0) input_processors = [input_processor] extra_comps = [BufferVoltage] else: input_processors = [] extra_comps = [BufferVoltage] if 'inputProcessors' in task: input_processors = loadExperimentSettings( task['inputProcessors']) output_processor = FileOutputProcessor( [('V', lpu['output_uid_list'])], lpu['output_file'], sample_interval=10) (comp_dict, conns) = LPU.graph_to_dicts(graph) # print(comp_dict) # print(conns) print(k) manager.add(LPU, k, dt, comp_dict, conns, device=0, input_processors=input_processors, output_processors=[output_processor], extra_comps=extra_comps, debug=True) # connect LPUs by Patterns for k, pattern in patterns.items(): l1, l2 = k.split('-') if l1 in lpus and l2 in lpus: print('Connecting {} and {}'.format(l1, l2)) pat, key_order = Pattern.from_graph(nx.DiGraph( pattern['graph']), return_key_order=True) print(l1, l2) print(key_order) with Timer('update of connections in Manager'): manager.connect(l1, l2, pat, int_0=key_order.index(l1), int_1=key_order.index(l2)) # start simulation steps = config['General']['steps'] ignored_steps = config['General']['ignored_steps'] if 'steps' in task: steps = task['steps'] if 'ignored_steps' in task: ignored_steps = task['ignored_steps'] # ignored_steps = 0 # steps = 100 manager.spawn() manager.start(steps=steps) manager.wait() time.sleep(5) print(task) # post-processing inputs (hard coded, can be better organized) inputs = { u'ydomain': 1.0, u'xdomain': dt * (steps - ignored_steps), u'dt': dt * 10, u'data': {} } if 'retina' in lpus: input_array = si.read_array('{}_{}.h5'.format( config['Retina']['input_file'], user_id)) inputs[u'ydomain'] = input_array.max() for i, item in enumerate(retina_input_uids): inputs['data'][item] = np.hstack( (np.arange(int((steps - ignored_steps) / 10)).reshape( (-1, 1)) * dt * 10, input_array[ignored_steps::10, i:i + 1])).tolist() del input_array # post-processing outputs from all LPUs and combine them into one dictionary result = { u'ydomain': 1, u'xdomain': dt * (steps - ignored_steps), u'dt': dt * 10, u'data': {} } for k, lpu in lpus.items(): with h5py.File(lpu['output_file']) as output_file: uids = output_file['V']['uids'][:] output_array = output_file['V']['data'][:] for i, item in enumerate(uids): output = output_array[int(ignored_steps / 10):, i:i + 1] # tmp = output.max()-output.min() # if tmp <= 0.01: #mV # output = (output - output.min()) + 0.5 # else: # output = (output - output.min())/tmp*0.9+0.1 result['data'][item] = np.hstack( (np.arange(int((steps - ignored_steps) / 10)).reshape( (-1, 1)) * dt * 10, output)).tolist() return inputs, result
def launch(self, user_id, task): # neuron_uid_list = [str(a) for a in task['neuron_list']] try: # conf_obj = get_config_obj() # config = conf_obj.conf setup_logger(file_name = 'neurokernel_'+user_id+'.log', screen = False) manager = core.Manager() lpus = {} patterns = {} G = task['data'] for i in list(G['Pattern'].keys()): a = G['Pattern'][i]['nodes'] if len([k for k,v in a.items() if v['class'] == 'Port']) == 0: del G['Pattern'][i] for i in list(G['LPU'].keys()): a = G['LPU'][i]['nodes'] if len(a) < 3: del G['LPU'][i] # with open('G.pickle', 'wb') as f: # pickle.dump(G, f, protocol=pickle.HIGHEST_PROTOCOL) # print(G) # print(G.keys()) # print(G['LPU']) # print(G['LPU'].keys()) # get graph and output_uid_list for each LPU for k, lpu in G['LPU'].items(): lpus[k] = {} g_lpu_na = create_graph_from_database_returned(lpu) lpu_nk_graph = nk.na_lpu_to_nk_new(g_lpu_na) lpus[k]['graph'] = lpu_nk_graph # lpus[k]['output_uid_list'] = list( # set(lpu_nk_graph.nodes()).intersection( # set(neuron_uid_list))) # lpus[k]['output_file'] = '{}_output_{}.h5'.format(k, user_id) for kkey, lpu in lpus.items(): graph = lpu['graph'] for uid, comp in graph.nodes.items(): if 'attr_dict' in comp: print('Found attr_dict; fixing...') nx.set_node_attributes(graph, {uid: comp['attr_dict']}) # print('changed',uid) graph.nodes[uid].pop('attr_dict') if 'params' in comp: params = graph.nodes[uid].pop('params') nx.set_node_attributes(graph, {uid: {k: float(v) for k, v in params.items()}}) if 'states' in comp: states = graph.nodes[uid].pop('states') nx.set_node_attributes(graph, {uid: {'init{}'.format(k): float(v) for k, v in states.items()}}) for i,j,k,v in graph.edges(keys=True, data=True): if 'attr_dict' in v: for key in v['attr_dict']: nx.set_edge_attributes(graph, {(i,j,k): {key: v['attr_dict'][key]}}) graph.edges[(i,j,k)].pop('attr_dict') lpus[kkey]['graph'] = graph # get graph for each Pattern for k, pat in G['Pattern'].items(): l1,l2 = k.split('-') if l1 in lpus and l2 in lpus: g_pattern_na = create_graph_from_database_returned(pat) pattern_nk = nk.na_pat_to_nk(g_pattern_na) #print(lpus[l1]['graph'].nodes(data=True)) lpu_ports = [node[1]['selector'] \ for node in lpus[l1]['graph'].nodes(data=True) \ if node[1]['class']=='Port'] + \ [node[1]['selector'] \ for node in lpus[l2]['graph'].nodes(data=True) \ if node[1]['class']=='Port'] pattern_ports = pattern_nk.nodes() patterns[k] = {} patterns[k]['graph'] = pattern_nk.subgraph( list(set(lpu_ports).intersection(set(pattern_ports)))) # dt = config['General']['dt'] # if 'dt' in task: dt = task['dt'] print(dt) device_count = 0 # add LPUs to manager for k, lpu in lpus.items(): lpu_name = k graph = lpu['graph'] for uid, comp in graph.nodes.items(): if 'attr_dict' in comp: nx.set_node_attributes(graph, {uid: comp['attr_dict']}) # print('changed',uid) graph.nodes[uid].pop('attr_dict') for i,j,ko,v in graph.edges(keys=True, data=True): if 'attr_dict' in v: for key in v['attr_dict']: nx.set_edge_attributes(graph, {(i,j,ko): {key: v['attr_dict'][key]}}) graph.edges[(i,j,ko)].pop('attr_dict') # nx.write_gexf(graph,'name.gexf') # with open(lpu_name + '.pickle', 'wb') as f: # pickle.dump(graph, f, protocol=pickle.HIGHEST_PROTOCOL) comps = graph.nodes.items() #for uid, comp in comps: # if 'attr_dict' in comp: # nx.set_node_attributes(graph, {uid: comp['attr_dict']}) # print('changed',uid) # if 'class' in comp: # if k == 'retina': # if config['Retina']['intype'] == 'Natural': # coord_file = config['InputType']['Natural']['coord_file'] # tmp = os.path.splitext(coord_file) # config['InputType']['Natural']['coord_file'] = '{}_{}{}'.format( # tmp[0], user_id, tmp[1]) # prs = [node for node in graph.nodes(data=True) \ # if node[1]['class'] == 'PhotoreceptorModel'] # for pr in prs: # graph.node[pr[0]]['num_microvilli'] = 3000 # input_processors = [RetinaInputIndividual(config, prs, user_id)] # extra_comps = [PhotoreceptorModel] # retina_input_uids = [a[0] for a in prs] # # elif k == 'EB': # # input_processor = StepInputProcessor('I', [node[0] for node in graph.nodes(data=True) \ # # if node[1]['class'] == 'LeakyIAF'], 40.0, 0.0, 1.0) # # input_processors = [input_processor] # # extra_comps = []#[BufferVoltage] # else: # input_processors = [] # extra_comps = [BufferVoltage] if 'inputProcessors' in task: if lpu_name in task['inputProcessors']: input_processors, record = \ loadInputProcessors(task['inputProcessors'][lpu_name]) lpus[k]['input_record'] = record else: input_processors = [] else: input_processors = [] # configure output processors lpus[k]['output_file'] = '{}_output_{}.h5'.format(k, user_id) output_processors = [] if 'outputProcessors' in task: if lpu_name in task['outputProcessors']: output_processors, record = loadOutputProcessors( lpus[k]['output_file'], task['outputProcessors'][lpu_name]) if len(record): lpus[k]['output_uid_dict'] = record # (comp_dict, conns) = LPU.graph_to_dicts(graph) manager.add(LPU, k, dt, 'pickle', pickle.dumps(graph),#comp_dict, conns, device = device_count, input_processors = input_processors, output_processors = output_processors, extra_comps = [], debug = False) device_count = (device_count+1) % self.ngpus # connect LPUs by Patterns for k, pattern in patterns.items(): l1,l2 = k.split('-') if l1 in lpus and l2 in lpus: print('Connecting {} and {}'.format(l1, l2)) pat, key_order = Pattern.from_graph(nx.DiGraph(pattern['graph']), return_key_order = True) print(l1,l2) print(key_order) with Timer('update of connections in Manager'): try: manager.connect(l1, l2, pat, int_0 = key_order.index('{}/{}'.format(k,l1)), int_1 = key_order.index('{}/{}'.format(k,l2))) except ValueError: manager.connect(l1, l2, pat, int_0 = key_order.index(l1), int_1 = key_order.index(l2)) # start simulation # steps = config['General']['steps'] # ignored_steps = config['General']['ignored_steps'] # if 'steps' in task: steps = task['steps'] # if 'ignored_steps' in task: # ignored_steps = task['ignored_steps'] # ignored_steps = 0 # steps = 100 manager.spawn() manager.start(steps=steps) except: exc_type, exc_value, exc_traceback = sys.exc_info() tb = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) print('An error occured during the compilation\n' + tb) return {'error': {'exception': tb, 'message': 'An error occured during the compilation in execution'}} try: manager.wait() except LPUExecutionError: ErrorMessage = 'An error occured during execution of LPU {} at step {}:\n'.format( manager._errors[0][0], manager._errors[0][1]) + \ ''.join(manager._errors[0][2]) print(ErrorMessage) return {'error': {'exception': ''.join(manager._errors[0][2]), 'message': 'An error occured during execution of LPU {} at step {}:\n'.format( manager._errors[0][0], manager._errors[0][1])}} time.sleep(5) # print(task) ignored_steps = 0 try: # post-processing inputs (hard coded, can be better organized) result = {'sensory': {}, 'input': {}, 'output': {}} for k, lpu in lpus.items(): records = lpu.get('input_record', []) for record in records: if record['sensory_file'] is not None: if k not in result['sensory']: result['sensory'][k] = [] with h5py.File(record['sensory_file']) as sensory_file: result['sensory'][k].append({'dt': record['sensory_interval']*dt, 'data': sensory_file['sensory'][:]}) if record['input_file'] is not None: with h5py.File(record['input_file']) as input_file: sample_interval = input_file['metadata'].attrs['sample_interval'] for var in input_file.keys(): if var == 'metadata': continue uids = [n.decode() for n in input_file[var]['uids'][:]] input_array = input_file[var]['data'][:] for i, item in enumerate(uids): if var == 'spike_state': input = np.nonzero(input_array[ignored_steps:, i:i+1].reshape(-1))[0]*dt if item in result['input']: if 'spike_time' in result['input'][item]: result['input'][item]['spike_time']['data'].append(input) result['input'][item]['spike_time']['data'] = \ np.sort(result['input'][item]['spike_time']['data']) else: result['input'][item]['spike_time'] = { 'data': input.copy(), 'dt': dt*sample_interval} else: result['input'][item] = {'spike_time': { 'data': input.copy(), 'dt': dt*sample_interval}} else: input = input_array[ignored_steps:, i:i+1] if item in result['input']: if var in result['input'][item]: result['input'][item][var]['data'] += input else: result['input'][item][var] = { 'data': input.copy(), 'dt': dt*sample_interval} else: result['input'][item] = {var: { 'data': input.copy(), 'dt': dt*sample_interval}} # if 'retina' in lpus: # input_array = si.read_array( # '{}_{}.h5'.format(config['Retina']['input_file'], user_id)) # inputs[u'ydomain'] = input_array.max() # for i, item in enumerate(retina_input_uids): # inputs['data'][item] = np.hstack( # (np.arange(int((steps-ignored_steps)/10)).reshape((-1,1))*dt*10, # input_array[ignored_steps::10,i:i+1])).tolist() # # del input_array # post-processing outputs from all LPUs and combine them into one dictionary # result = {u'data': {}} for k, lpu in lpus.items(): uid_dict = lpu.get('output_uid_dict', None) if uid_dict is not None: with h5py.File(lpu['output_file']) as output_file: sample_interval = output_file['metadata'].attrs['sample_interval'] for var in uid_dict: if var == 'spike_state': uids = [n.decode() for n in output_file[var]['uids'][:]] spike_times = output_file[var]['data']['time'][:] index = output_file[var]['data']['index'][:] for i, item in enumerate(uids): # output = np.nonzero(output_array[ignored_steps:, i:i+1].reshape(-1))[0]*dt output = spike_times[index == i] output = output[output>ignored_steps*dt]-ignored_steps*dt if item in result['output']: result['output'][item]['spike_time'] = { 'data': output, 'dt': dt*sample_interval} else: result['output'][item] = {'spike_time': { 'data': output, 'dt': dt*sample_interval}} else: uids = [n.decode() for n in output_file[var]['uids'][:]] output_array = output_file[var]['data'][:] for i, item in enumerate(uids): # if var == 'spike_state': # output = np.nonzero(output_array[ignored_steps:, i:i+1].reshape(-1))[0]*dt # if item in result['output']: # result['output'][item]['spike_time'] = { # 'data': output.tolist(), # 'dt': dt} # else: # result['output'][item] = {'spike_time': { # 'data': output.tolist(), # 'dt': dt}} # else: output = output_array[ignored_steps:, i:i+1] if item in result['output']: result['output'][item][var] = { 'data': output.copy(), 'dt': dt*sample_interval} else: result['output'][item] = {var: { 'data': output.copy(), 'dt': dt*sample_interval}} result = {'success': {'result': result, 'meta': {'dur': steps*dt}}} except: exc_type, exc_value, exc_traceback = sys.exc_info() tb = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) print('An error occured postprocessing of results\n' + tb) return {'error': {'exception': tb, 'message': 'An error occured when postprocessing of results in execution'}} return result