コード例 #1
0
def test_solve_spherical_system():
    # a PDE system that can be decoupled into 2 Laplacian equations :math:`\\nabla^2 u = 0` and :math:`\\nabla^2 v = 0`
    pde_system = lambda u, v, r, theta, phi: [
        laplacian_spherical(u, r, theta, phi) + laplacian_spherical(
            v, r, theta, phi),
        laplacian_spherical(u, r, theta, phi) - laplacian_spherical(
            v, r, theta, phi),
    ]

    # constant boundary conditions for u and v; solution should be u = 0 identically and v = 1 identically
    conditions = [
        DirichletBVPSpherical(r_0=0.,
                              f=lambda phi, theta: 0.,
                              r_1=1.,
                              g=lambda phi, theta: 0.),
        DirichletBVPSpherical(r_0=0.,
                              f=lambda phi, theta: 1.,
                              r_1=1.,
                              g=lambda phi, theta: 1.),
    ]

    with pytest.warns(FutureWarning):
        solution, _ = solve_spherical_system(pde_system,
                                             conditions,
                                             0.0,
                                             1.0,
                                             max_epochs=2,
                                             return_best=True)
    assert isinstance(solution, SolutionSpherical)
コード例 #2
0
def test_solve_spherical_system():
    # a PDE system that can be decoupled into 2 Laplacian equations :math:`\\nabla^2 u = 0` and :math:`\\nabla^2 v = 0`
    pde_system = lambda u, v, r, theta, phi: [
        laplacian_spherical(u, r, theta, phi) + laplacian_spherical(
            v, r, theta, phi),
        laplacian_spherical(u, r, theta, phi) - laplacian_spherical(
            v, r, theta, phi),
    ]

    # constant boundary conditions for u and v; solution should be u = 0 identically and v = 1 identically
    conditions = [
        DirichletBVPSpherical(r_0=0.,
                              f=lambda phi, theta: 0.,
                              r_1=1.,
                              g=lambda phi, theta: 0.),
        DirichletBVPSpherical(r_0=0.,
                              f=lambda phi, theta: 1.,
                              r_1=1.,
                              g=lambda phi, theta: 1.),
    ]

    solution, loss_history = solve_spherical_system(pde_system,
                                                    conditions,
                                                    0.0,
                                                    1.0,
                                                    max_epochs=2,
                                                    return_best=True)
    generator = GeneratorSpherical(512, r_min=0., r_max=1.)
    rs, thetas, phis = generator.get_examples()
    us, vs = solution(rs, thetas, phis, as_type='np')
コード例 #3
0
ファイル: test_conditions.py プロジェクト: vesple/neurodiffeq
def test_dirichlet_bvp_spherical():
    r0, r1 = x0, x1
    r2 = (r0 + r1) / 2

    no_condition = NoCondition()
    # B.C. for the interior boundary (r_min)
    net_f = FCNN(2, 1)
    f = lambda th, ph: no_condition.enforce(net_f, th, ph)

    # B.C. for the exterior boundary (r_max)
    net_g = FCNN(2, 1)
    g = lambda th, ph: no_condition.enforce(net_g, th, ph)

    condition = DirichletBVPSpherical(r_0=r0, f=f, r_1=r1, g=g)

    net = FCNN(3, 1)
    theta = torch.rand(N_SAMPLES, 1) * np.pi
    phi = torch.rand(N_SAMPLES, 1) * 2 * np.pi
    r = r0 * ones
    assert all_close(condition.enforce(net, r, theta, phi),
                     f(theta, phi)), "inner Dirichlet BC not satisfied"
    r = r1 * ones
    assert all_close(condition.enforce(net, r, theta, phi),
                     g(theta, phi)), "inner Dirichlet BC not satisfied"

    condition = DirichletBVPSpherical(r_0=r2, f=f)
    r = r2 * ones
    assert all_close(condition.enforce(net, r, theta, phi),
                     f(theta, phi)), "single ended BC not satisfied"
コード例 #4
0
def test_dirichlet_bvp_spherical():
    # B.C. for the interior boundary (r_min)
    interior = nn.Linear(in_features=2, out_features=1, bias=True)
    f = lambda theta, phi: interior(torch.cat([theta, phi], dim=1))

    # B.C. for the exterior boundary (r_max)
    exterior = nn.Linear(in_features=2, out_features=1, bias=True)
    g = lambda theta, phi: exterior(torch.cat([theta, phi], dim=1))

    bvp = DirichletBVPSpherical(r_0=0., f=f, r_1=1.0, g=g)

    net = nn.Linear(in_features=3, out_features=1, bias=True)
    theta = torch.rand(10, 1) * np.pi
    phi = torch.rand(10, 1) * 2 * np.pi

    r = torch.zeros_like(theta)
    v0 = f(theta, phi).detach().cpu().numpy()
    u0 = bvp.enforce(net, r, theta, phi).detach().cpu().numpy()
    assert np.isclose(v0, u0,
                      atol=1.e-5).all(), f"Unmatched boundary {v0} != {u0}"

    r = torch.ones_like(theta)
    v1 = g(theta, phi).detach().cpu().numpy()
    u1 = bvp.enforce(net, r, theta, phi).detach().cpu().numpy()
    assert np.isclose(v1, u1,
                      atol=1.e-5).all(), f"Unmatched boundary {v1} != {u1}"

    bvp_half = DirichletBVPSpherical(r_0=2., f=f)

    r = torch.ones_like(theta) * 2.
    v2 = f(theta, phi).detach().cpu().numpy()
    u2 = bvp_half.enforce(net, r, theta, phi).detach().cpu().numpy()
    assert np.isclose(v2, u2,
                      atol=1.e-5).all(), f"Unmatched boundary {v2} != {u2}"
コード例 #5
0
def test_solve_spherical():
    pde = laplacian_spherical
    generator = GeneratorSpherical(512)

    # 0-boundary condition; solution should be u(r, theta, phi) = 0 identically
    f = lambda th, ph: 0.
    g = lambda th, ph: 0.
    condition = DirichletBVPSpherical(r_0=0., f=f, r_1=1., g=g)
    with pytest.warns(FutureWarning):
        solution, loss_history = solve_spherical(pde,
                                                 condition,
                                                 0.0,
                                                 1.0,
                                                 max_epochs=2,
                                                 return_best=True)
    assert isinstance(solution, SolutionSpherical)
コード例 #6
0
def test_solve_spherical():
    pde = laplacian_spherical
    generator = GeneratorSpherical(512)

    # 0-boundary condition; solution should be u(r, theta, phi) = 0 identically
    f = lambda th, ph: 0.
    g = lambda th, ph: 0.
    condition = DirichletBVPSpherical(r_0=0., f=f, r_1=1., g=g)
    solution, loss_history = solve_spherical(pde,
                                             condition,
                                             0.0,
                                             1.0,
                                             max_epochs=2,
                                             return_best=True)
    rs, thetas, phis = generator.get_examples()
    us = solution(rs, thetas, phis, as_type='np')
コード例 #7
0
def test_monitor_spherical():
    f = lambda th, ph: 0.
    g = lambda th, ph: 0.
    conditions = [DirichletBVPSpherical(r_0=0., f=f, r_1=1., g=g)]
    nets = [FCNN(3, 1)]
    monitor = MonitorSpherical(0.0, 1.0, check_every=1)
    loss_history = {
        'train': list(np.random.rand(10)),
        'valid': list(np.random.rand(10)),
    }
    analytic_mse_history = {
        'train': list(np.random.rand(10)),
        'valid': list(np.random.rand(10)),
    }
    history = {
        'train_loss': list(np.random.rand(10)),
        'valid_loss': list(np.random.rand(10)),
        'train_foo': list(np.random.rand(10)),
        'valid_foo': list(np.random.rand(10)),
        'train_bar': list(np.random.rand(10)),
        'valid_bar': list(np.random.rand(10)),
    }
    with pytest.warns(FutureWarning):
        monitor.check(nets,
                      conditions,
                      history=history,
                      analytic_mse_history=analytic_mse_history)
    with pytest.warns(FutureWarning):
        monitor.check(nets, conditions, history=loss_history)
    with pytest.warns(FutureWarning):
        monitor.check(nets,
                      conditions,
                      history=loss_history,
                      analytic_mse_history=analytic_mse_history)
    with pytest.raises(ValueError):
        monitor.check(nets,
                      conditions,
                      history={
                          'train_foo': [],
                          'valid_foo': []
                      })
    monitor.check(nets, conditions, history=history)
コード例 #8
0
def test_monitor_spherical():
    f = lambda th, ph: 0.
    g = lambda th, ph: 0.
    conditions = [DirichletBVPSpherical(r_0=0., f=f, r_1=1., g=g)]
    nets = [FCNN(3, 1)]
    monitor = MonitorSpherical(0.0, 1.0, check_every=1)
    loss_history = {
        'train': list(np.random.rand(10)),
        'valid': list(np.random.rand(10)),
    }
    analytic_mse_history = {
        'train': list(np.random.rand(10)),
        'valid': list(np.random.rand(10)),
    }
    monitor.check(
        nets,
        conditions,
        loss_history=loss_history,
        analytic_mse_history=analytic_mse_history,
    )
コード例 #9
0
def test_electric_potential_gaussian_charged_density():
    # total charge
    Q = 1.
    # standard deviation of gaussian
    sigma = 1.
    # medium permittivity
    epsilon = 1.
    # Coulomb constant
    k = 1 / (4 * np.pi * epsilon)
    # coefficient of gaussian term
    gaussian_coeff = Q / (sigma**3) / np.power(2 * np.pi, 1.5)
    # distribution of charge
    rho_f = lambda r: gaussian_coeff * torch.exp(-r.pow(2) / (2 * sigma**2))
    # analytic solution, refer to https://en.wikipedia.org/wiki/Poisson%27s_equation
    analytic_solution = lambda r, th, ph: (k * Q / r) * torch.erf(r / (np.sqrt(
        2) * sigma))

    # interior and exterior radius
    r_0, r_1 = 0.1, 3.
    # values at interior and exterior boundary
    v_0 = (k * Q / r_0) * erf(r_0 / (np.sqrt(2) * sigma))
    v_1 = (k * Q / r_1) * erf(r_1 / (np.sqrt(2) * sigma))

    def validate(solution):
        generator = GeneratorSpherical(512, r_min=r_0, r_max=r_1)
        rs, thetas, phis = generator.get_examples()
        us = solution(rs, thetas, phis, to_numpy=True)
        vs = analytic_solution(rs, thetas, phis).detach().cpu().numpy()
        assert us.shape == vs.shape

    # solving the problem using normal network (subject to the influence of polar singularity of laplacian operator)

    pde1 = lambda u, r, th, ph: laplacian_spherical(u, r, th, ph) + rho_f(
        r) / epsilon
    condition1 = DirichletBVPSpherical(r_0, lambda th, ph: v_0, r_1,
                                       lambda th, ph: v_1)
    monitor1 = MonitorSpherical(r_0, r_1, check_every=50)
    with pytest.warns(FutureWarning):
        solution1, metrics_history = solve_spherical(
            pde1,
            condition1,
            r_0,
            r_1,
            max_epochs=2,
            return_best=True,
            analytic_solution=analytic_solution,
            monitor=monitor1,
        )
    validate(solution1)

    # solving the problem using spherical harmonics (laplcian computation is optimized)
    max_degree = 2
    harmonics_fn = RealSphericalHarmonics(max_degree=max_degree)
    harmonic_laplacian = HarmonicsLaplacian(max_degree=max_degree)
    pde2 = lambda R, r, th, ph: harmonic_laplacian(R, r, th, ph) + rho_f(
        r) / epsilon
    R_0 = torch.tensor([v_0 * 2] + [0 for _ in range((max_degree + 1)**2 - 1)])
    R_1 = torch.tensor([v_1 * 2] + [0 for _ in range((max_degree + 1)**2 - 1)])

    def analytic_solution2(r, th, ph):
        sol = torch.zeros(r.shape[0], (max_degree + 1)**2)
        sol[:, 0:1] = 2 * analytic_solution(r, th, ph)
        return sol

    condition2 = DirichletBVPSphericalBasis(r_0=r_0,
                                            R_0=R_0,
                                            r_1=r_1,
                                            R_1=R_1,
                                            max_degree=max_degree)
    monitor2 = MonitorSphericalHarmonics(r_0,
                                         r_1,
                                         check_every=50,
                                         harmonics_fn=harmonics_fn)
    net2 = FCNN(n_input_units=1, n_output_units=(max_degree + 1)**2)
    with pytest.warns(FutureWarning):
        solution2, metrics_history = solve_spherical(
            pde2,
            condition2,
            r_0,
            r_1,
            net=net2,
            max_epochs=2,
            return_best=True,
            analytic_solution=analytic_solution2,
            monitor=monitor2,
            harmonics_fn=harmonics_fn,
        )
    validate(solution2)