コード例 #1
0
def test_generator2d():
    grid = (5, 6)
    size = grid[0] * grid[1]
    x_min, x_max = 0.0, 1.0
    y_min, y_max = -1.0, 0.0
    x_std, y_std = 0.05, 0.06

    generator = Generator2D(grid=grid,
                            xy_min=(x_min, y_min),
                            xy_max=(x_max, y_max),
                            method='equally-spaced-noisy')
    x, y = generator.getter()
    assert _check_shape_and_grad(generator, size, x, y)

    generator = Generator2D(grid=grid,
                            xy_min=(x_min, y_min),
                            xy_max=(x_max, y_max),
                            method='equally-spaced-noisy',
                            xy_noise_std=(x_std, y_std))
    x, y = generator.getter()
    assert _check_shape_and_grad(generator, size, x, y)

    generator = Generator2D(grid=grid,
                            xy_min=(x_min, y_min),
                            xy_max=(x_max, y_max),
                            method='equally-spaced')
    x, y = generator.getter()
    assert _check_shape_and_grad(generator, size, x, y)
    assert _check_boundary((x, y), (x_min, y_min), (x_max, y_max))

    str(generator)
    repr(generator)
コード例 #2
0
    def __init__(
            self,
            pde_system,
            conditions,
            xy_min,
            xy_max,
            nets=None,
            train_generator=None,
            valid_generator=None,
            analytic_solutions=None,
            optimizer=None,
            criterion=None,
            n_batches_train=1,
            n_batches_valid=4,
            metrics=None,
            n_output_units=1,
            # deprecated arguments are listed below
            batch_size=None,
            shuffle=None):

        if train_generator is None or valid_generator is None:
            if xy_min is None or xy_max is None:
                raise ValueError(
                    f"Either generator is not provided, xy_min and xy_max should be both provided: \n"
                    f"got xy_min={xy_min}, xy_max={xy_max}, "
                    f"train_generator={train_generator}, valid_generator={valid_generator}"
                )

        if train_generator is None:
            train_generator = Generator2D((32, 32),
                                          xy_min=xy_min,
                                          xy_max=xy_max,
                                          method='equally-spaced-noisy')
        if valid_generator is None:
            valid_generator = Generator2D((32, 32),
                                          xy_min=xy_min,
                                          xy_max=xy_max,
                                          method='equally-spaced')

        self.xy_min, self.xy_max = xy_min, xy_max

        super(Solver2D, self).__init__(
            diff_eqs=pde_system,
            conditions=conditions,
            nets=nets,
            train_generator=train_generator,
            valid_generator=valid_generator,
            analytic_solutions=analytic_solutions,
            optimizer=optimizer,
            criterion=criterion,
            n_batches_train=n_batches_train,
            n_batches_valid=n_batches_valid,
            metrics=metrics,
            n_input_units=2,
            n_output_units=n_output_units,
            shuffle=shuffle,
            batch_size=batch_size,
        )
コード例 #3
0
def test_monitor():

    laplace = lambda u, x, y: diff(u, x, order=2) + diff(u, y, order=2)
    bc = DirichletBVP2D(x_min=0,
                        x_min_val=lambda y: torch.sin(np.pi * y),
                        x_max=1,
                        x_max_val=lambda y: 0,
                        y_min=0,
                        y_min_val=lambda x: 0,
                        y_max=1,
                        y_max_val=lambda x: 0)

    net = FCNN(n_input_units=2, hidden_units=(32, 32))
    solution_neural_net_laplace, _ = solve2D(
        pde=laplace,
        condition=bc,
        xy_min=(0, 0),
        xy_max=(1, 1),
        net=net,
        max_epochs=3,
        train_generator=Generator2D((32, 32), (0, 0), (1, 1),
                                    method='equally-spaced-noisy'),
        batch_size=64,
        monitor=Monitor2D(check_every=1, xy_min=(0, 0), xy_max=(1, 1)))
    print('Monitor test passed.')
コード例 #4
0
def test_laplace():

    laplace = lambda u, x, y: diff(u, x, order=2) + diff(u, y, order=2)
    bc = DirichletBVP2D(x_min=0,
                        x_min_val=lambda y: torch.sin(np.pi * y),
                        x_max=1,
                        x_max_val=lambda y: 0,
                        y_min=0,
                        y_min_val=lambda x: 0,
                        y_max=1,
                        y_max_val=lambda x: 0)

    net = FCNN(n_input_units=2, hidden_units=(32, 32))
    solution_neural_net_laplace, _ = solve2D(pde=laplace,
                                             condition=bc,
                                             xy_min=(0, 0),
                                             xy_max=(1, 1),
                                             net=net,
                                             max_epochs=300,
                                             train_generator=Generator2D(
                                                 (32, 32), (0, 0), (1, 1),
                                                 method='equally-spaced-noisy',
                                                 xy_noise_std=(0.01, 0.01)),
                                             batch_size=64)
    solution_analytical_laplace = lambda x, y: np.sin(np.pi * y) * np.sinh(
        np.pi * (1 - x)) / np.sinh(np.pi)

    xs, ys = np.linspace(0, 1, 101), np.linspace(0, 1, 101)
    xx, yy = np.meshgrid(xs, ys)
    sol_net = solution_neural_net_laplace(xx, yy, as_type='np')
    sol_ana = solution_analytical_laplace(xx, yy)
    assert isclose(sol_net, sol_ana, atol=0.01).all()
    print('Laplace test passed.')
コード例 #5
0
def test_laplace():
    laplace = lambda u, x, y: diff(u, x, order=2) + diff(u, y, order=2)
    bc = DirichletBVP2D(x_min=0,
                        x_min_val=lambda y: torch.sin(np.pi * y),
                        x_max=1,
                        x_max_val=lambda y: 0,
                        y_min=0,
                        y_min_val=lambda x: 0,
                        y_max=1,
                        y_max_val=lambda x: 0)

    net = FCNN(n_input_units=2, hidden_units=(32, 32))
    solution_neural_net_laplace, loss_history = solve2D(
        pde=laplace,
        condition=bc,
        xy_min=(0, 0),
        xy_max=(1, 1),
        net=net,
        max_epochs=3,
        train_generator=Generator2D((32, 32), (0, 0), (1, 1),
                                    method='equally-spaced-noisy',
                                    xy_noise_std=(0.01, 0.01)),
        batch_size=64)
    assert isinstance(solution_neural_net_laplace, Solution2D)
    assert isinstance(loss_history, dict)
    keys = ['train_loss', 'valid_loss']
    for key in keys:
        assert key in loss_history
        assert isinstance(loss_history[key], list)
    assert len(loss_history[keys[0]]) == len(loss_history[keys[1]])
コード例 #6
0
def test_filter_generator():
    grid = (10, 10)
    size = 100

    x = [i * 1.0 for i in range(size)]
    filter_fn = lambda a: (a[0] % 2 == 0)
    filter_fn_2 = lambda a: (a % 2 == 0)
    x_expected = filter(filter_fn_2, x)

    generator = PredefinedGenerator(x)
    filter_generator = FilterGenerator(generator,
                                       filter_fn=filter_fn,
                                       update_size=True)
    x = filter_generator.get_examples()
    assert _check_shape_and_grad(filter_generator, size // 2, x)
    assert _check_iterable_equal(x_expected, x)

    x = [i * 1.0 for i in range(size)]
    y = [-i * 1.0 for i in range(size)]
    filter_fn = lambda ab: (ab[0] % 2 == 0) & (ab[1] > -size / 2)
    x_expected, y_expected = list(zip(*filter(filter_fn, zip(x, y))))
    generator = PredefinedGenerator(x, y)
    filter_generator = FilterGenerator(generator, filter_fn)
    x, y = filter_generator.get_examples()
    assert _check_shape_and_grad(filter_generator, size // 4, x, y)
    assert _check_iterable_equal(x_expected, x)
    assert _check_iterable_equal(y_expected, y)

    generator = Generator2D(grid)
    filter_fn = lambda ab: (ab[0] > 0.5) & (ab[1] < 0.5)
    filter_generator = FilterGenerator(generator, filter_fn)
    for _ in range(5):
        x, y = filter_generator.get_examples()
        assert _check_shape_and_grad(filter_generator, None, x, y)

    fixed_size = 42
    filter_generator = FilterGenerator(generator,
                                       filter_fn,
                                       size=fixed_size,
                                       update_size=False)
    for _ in range(5):
        assert _check_shape_and_grad(filter_generator, fixed_size)
        filter_generator.get_examples()

    str(filter_generator)
    repr(filter_generator)
コード例 #7
0
def test_heat():

    k, L, T = 0.3, 2, 3
    heat = lambda u, x, t: diff(u, t) - k * diff(u, x, order=2)

    ibvp = IBVP1D(x_min=0,
                  x_min_val=lambda t: 0,
                  x_max=L,
                  x_max_val=lambda t: 0,
                  t_min=0,
                  t_min_val=lambda x: torch.sin(np.pi * x / L))
    net = FCNN(n_input_units=2, hidden_units=(32, 32))

    def mse(u, x, y):
        true_u = torch.sin(np.pi * y) * torch.sinh(np.pi *
                                                   (1 - x)) / np.sinh(np.pi)
        return torch.mean((u - true_u)**2)

    solution_neural_net_heat, _ = solve2D(pde=heat,
                                          condition=ibvp,
                                          xy_min=(0, 0),
                                          xy_max=(L, T),
                                          net=net,
                                          max_epochs=300,
                                          train_generator=Generator2D(
                                              (32, 32), (0, 0), (L, T),
                                              method='equally-spaced-noisy'),
                                          batch_size=64,
                                          metrics={'mse': mse})
    solution_analytical_heat = lambda x, t: np.sin(np.pi * x / L) * np.exp(
        -k * np.pi**2 * t / L**2)

    xs = np.linspace(0, L, 101)
    ts = np.linspace(0, T, 101)
    xx, tt = np.meshgrid(xs, ts)
    make_animation(solution_neural_net_heat, xs, ts)  # test animation
    sol_ana = solution_analytical_heat(xx, tt)
    sol_net = solution_neural_net_heat(xx, tt, as_type='np')
    assert isclose(sol_net, sol_ana, atol=0.01).all()
    print('Heat test passed.')
コード例 #8
0
def test_neumann_boundaries_2():

    k, L, T = 0.3, 2, 3
    heat = lambda u, x, t: diff(u, t) - k * diff(u, x, order=2)
    solution_analytical_heat = lambda x, t: np.sin(np.pi * x / L) * np.exp(
        -k * np.pi**2 * t / L**2)

    # Neumann on the left Dirichlet on the right
    ibvp = IBVP1D(
        x_min=0,
        x_min_prime=lambda t: np.pi / L * torch.exp(-k * np.pi**2 * t / L**2),
        x_max=L,
        x_max_val=lambda t: 0,
        t_min=0,
        t_min_val=lambda x: torch.sin(np.pi * x / L))

    net = FCNN(n_input_units=2, hidden_units=(32, 32))

    solution_neural_net_heat, _ = solve2D(pde=heat,
                                          condition=ibvp,
                                          xy_min=(0, 0),
                                          xy_max=(L, T),
                                          net=net,
                                          max_epochs=300,
                                          train_generator=Generator2D(
                                              (32, 32), (0, 0), (L, T),
                                              method='equally-spaced-noisy'),
                                          batch_size=64)

    xs = np.linspace(0, L, 101)
    ts = np.linspace(0, T, 101)
    xx, tt = np.meshgrid(xs, ts)
    make_animation(solution_neural_net_heat, xs, ts)  # test animation
    sol_ana = solution_analytical_heat(xx, tt)
    sol_net = solution_neural_net_heat(xx, tt, as_type='np')
    assert isclose(sol_net, sol_ana, atol=0.1).all()
    print('Neumann on the left Dirichlet on the right test passed.')
コード例 #9
0
def test_train_generator():
    laplace = lambda u, x, y: diff(u, x, order=2) + diff(u, y, order=2)
    bc = DirichletBVP2D(
        x_min=0, x_min_val=lambda y: torch.sin(np.pi * y),
        x_max=1, x_max_val=lambda y: 0,
        y_min=0, y_min_val=lambda x: 0,
        y_max=1, y_max_val=lambda x: 0
    )

    net = FCNN(n_input_units=2, hidden_units=(32, 32))
    solution_neural_net_laplace, _ = solve2D(
        pde=laplace, condition=bc, xy_min=(0, 0), xy_max=(1, 1),
        net=net, max_epochs=3,
        train_generator=Generator2D((32, 32), (0, 0), (1, 1), method='equally-spaced-noisy'),
        batch_size=64,
        monitor=Monitor2D(check_every=1, xy_min=(0, 0), xy_max=(1, 1))
    )

    train_gen = Generator2D((32, 32), (0, 0), (1, 1), method='equally-spaced')
    solution_neural_net_laplace, _ = solve2D(
        pde=laplace, condition=bc, xy_min=(0, 0), xy_max=(1, 1),
        net=net, max_epochs=3, train_generator=train_gen, batch_size=64
    )
    train_gen = Generator2D((32, 32), (0, 0), (1, 1), method='equally-spaced-noisy')
    solution_neural_net_laplace, _ = solve2D(
        pde=laplace, condition=bc, xy_min=(0, 0), xy_max=(1, 1),
        net=net, max_epochs=3, train_generator=train_gen, batch_size=64
    )

    with raises(ValueError):
        train_gen = Generator2D((32, 32), (0, 0), (1, 1), method='magic')

    valid_gen = Generator2D((32, 32), (0, 0), (1, 1), method='equally-spaced-noisy')
    train_gen = Generator2D((32, 32), (0, 0), (1, 1), method='equally-spaced')
    solution_neural_net_laplace, _ = solve2D(
        pde=laplace, condition=bc,
        net=net, max_epochs=3, train_generator=train_gen, valid_generator=valid_gen, batch_size=64
    )

    with raises(RuntimeError):
        solution_neural_net_laplace, _ = solve2D(
            pde=laplace, condition=bc,
            net=net, max_epochs=3, batch_size=64
        )
コード例 #10
0
def test_solution():
    x_grids = 7
    y_grids = 11
    xy_grids = (x_grids, y_grids)
    N_SAMPLES = x_grids * y_grids
    x0, y0 = random.random(), random.random()
    x1, y1 = random.random() + 1, random.random() + 1
    generator = Generator2D(xy_grids,
                            xy_min=(x0, y0),
                            xy_max=(x1, y1),
                            method='equally-spaced')

    u00, u01, u10, u11 = random.random(), random.random(), random.random(
    ), random.random()
    v00, v01, v10, v11 = random.random(), random.random(), random.random(
    ), random.random()

    def get_single_boundary_func(z0, w0, z1, w1):
        net = FCNN(1, 1)
        condition = DirichletBVP(z0, w0, z1, w1)

        def boundary_func(z):
            return condition.enforce(net, z)

        return boundary_func

    def get_all_boundary_funcs(w00, w01, w10, w11):
        wx0 = get_single_boundary_func(y0, w00, y1, w01)
        wx1 = get_single_boundary_func(y0, w10, y1, w11)
        wy0 = get_single_boundary_func(x0, w00, x1, w10)
        wy1 = get_single_boundary_func(x0, w01, x1, w11)
        return wx0, wx1, wy0, wy1

    ux0, ux1, uy0, uy1 = get_all_boundary_funcs(u00, u01, u10, u11)
    vx0, vx1, vy0, vy1 = get_all_boundary_funcs(v00, v01, v10, v11)

    def get_solution(use_single: bool) -> Solution2D:
        conditions = [
            DirichletBVP2D(x0, ux0, x1, ux1, y0, uy0, y1, uy1),
            DirichletBVP2D(x0, vx0, x1, vx1, y0, vy0, y1, vy1),
        ]
        if use_single:
            net = FCNN(2, 2)
            for i, cond in enumerate(conditions):
                cond.set_impose_on(i)
            return Solution2D(net, conditions)
        else:
            nets = [FCNN(2, 1), FCNN(2, 1)]
            return Solution2D(nets, conditions)

    def check_output(uv, shape, type, msg=""):
        msg += " "
        assert isinstance(uv,
                          (list, tuple)), msg + "returned type is not a list"
        assert len(uv) == 2, msg + "returned length is not 2"
        assert isinstance(uv[0], type) and isinstance(
            uv[1], type), msg + f"returned element is not {type}"
        u, v = uv
        assert u.shape == shape and v.shape == shape, msg + f"returned element shape is not {shape}"
        u, v = u.reshape(*xy_grids), v.reshape(*xy_grids)
        x = torch.linspace(x0, x1, steps=x_grids,
                           requires_grad=True).reshape(-1, 1)
        y = torch.linspace(y0, y1, steps=y_grids,
                           requires_grad=True).reshape(-1, 1)

        if type == torch.Tensor:
            check_close = lambda a, b: torch.isclose(a, b).all()
        elif type == np.ndarray:
            check_close = lambda a, b: np.isclose(a,
                                                  b.cpu().detach().numpy()).all
        else:
            raise ValueError(f"Unrecognized type={type}")

        assert check_close(u[0, :], torch.flatten(
            ux0(y))), msg + "u on x0 not satisfied"
        assert check_close(u[-1, :], torch.flatten(
            ux1(y))), msg + "u on x1 not satisfied"
        assert check_close(u[:, 0], torch.flatten(
            uy0(x))), msg + "u on y0 not satisfied"
        assert check_close(u[:, -1], torch.flatten(
            uy1(x))), msg + "u on y1 not satisfied"

        assert check_close(v[0, :], torch.flatten(
            vx0(y))), msg + "v on x0 not satisfied"
        assert check_close(v[-1, :], torch.flatten(
            vx1(y))), msg + "v on x1 not satisfied"
        assert check_close(v[:, 0], torch.flatten(
            vy0(x))), msg + "v on y0 not satisfied"
        assert check_close(v[:, -1], torch.flatten(
            vy1(x))), msg + "v on y1 not satisfied"

    for use_single in [True, False]:
        solution = get_solution(use_single=use_single)
        xs, ys = generator.get_examples()
        us = solution(xs, ys)
        check_output(us,
                     shape=(N_SAMPLES, ),
                     type=torch.Tensor,
                     msg=f"[use_single={use_single}]")
        us = solution(xs, ys, as_type='np')
        check_output(us,
                     shape=(N_SAMPLES, ),
                     type=np.ndarray,
                     msg=f"[use_single={use_single}]")

        xs, ys = xs.reshape(-1, 1), ys.reshape(-1, 1)
        us = solution(xs, ys)
        check_output(us,
                     shape=(N_SAMPLES, 1),
                     type=torch.Tensor,
                     msg=f"[use_single={use_single}]")
        us = solution(xs, ys, as_type='np')
        check_output(us,
                     shape=(N_SAMPLES, 1),
                     type=np.ndarray,
                     msg=f"[use_single={use_single}]")