コード例 #1
0
def test_model_updates(model, dataset):
    before = list(model.parameters())[0].clone().detach().cpu().numpy()
    cnn.train_model(model, dataset, epochs=1)
    after = list(model.parameters())[0].clone().detach().cpu().numpy()
    for b, a in zip(before, after):
        # Make sure something changed.
        assert (b != a).any()
コード例 #2
0
def train(net, train_loader, dtype, device, parameters):
    """
    Simplified training function for ax optimization.

    Args:
        net: Neural network object.
        train_loader: Training data loader.
        parameters (dict): Dictionary of parameter values.
        dtype: Data type.
        device: Device specifying cpu or gpu training.
    """
    cnn.train_model(model=net,
                    dataset=train_loader,
                    dtype=dtype,
                    device=device,
                    optim_args={"lr": parameters["lr"]},
                    **parameters)
    return
コード例 #3
0
ファイル: c10-hpt.py プロジェクト: linamnt/dnn-neurogenesis
def train(net, train_loader, dtype, device, parameters):
    """
    Simplified training function for ax optimization.

    Args:
        net: Neural network object.
        train_loader: Training data loader.
        parameters (dict): Dictionary of parameter values.
        dtype: Data type.
        device: Device specifying cpu or gpu training.
    """
    cnn.train_model(
        model=net,
        dataset=train_loader,
        optim_fn=optim.Adam,
        early_stop=False,
        epochs=parameters["epochs"],
        optim_args={
            "lr": parameters["lr"],
            "momentum": parameters["momentum"]
        },
    )
    return
コード例 #4
0
for i in range(REPEATS):
    print(f"Running trial {i+1}/{REPEATS}")
    net = cnn.NgnCnn(args.neurons, seed=i)
    for group in group_config:
        net_copy = copy.deepcopy(net)
        if "Dropout" in group:
            net_copy.dropout = 0.2
        if "Neural Noise" in group:
            net_copy.neural_noise = (-0.2, 0.5)
        net_copy.to(device)
        parameters = group_config[group]
        log, _ = cnn.train_model(
            model=net_copy,
            dataset=data_loader,
            dtype=dtype,
            device=device,
            **parameters,
        )

        accuracy = cnn.predict(net_copy,
                               data_loader,
                               device=device,
                               valid=False)
        train_accuracy = cnn.predict(net_copy, data_loader, train=True)
        print(group, accuracy)
        results.iloc[counter] = [
            group, train_accuracy["Accuracy"][0], accuracy["Accuracy"][0], i
        ]

        counter += 1