コード例 #1
0
ファイル: fit.py プロジェクト: voytekresearch/ndspflow
    def plot_spectra(self, result_index, f_range=(1, 100), figsize=(8, 8)):

        if self.results[result_index].sig_pe is None or self.results[
                result_index].sig_ap is None:
            self.decompose()

        # Compute spectra
        freqs, powers = compute_spectrum(self.sig, self.fs, f_range=f_range)

        freqs_pe, powers_pe = compute_spectrum(
            self.results[result_index].sig_pe, self.fs, f_range=f_range)

        freqs_ap, powers_ap = compute_spectrum(
            self.results[result_index].sig_ap, self.fs, f_range=f_range)

        # Plot
        _, ax = plt.subplots(figsize=figsize)

        plot_power_spectra(freqs, [powers, powers_pe, powers_ap],
                           title="Reconstructed Components",
                           labels=['Orig', 'PE Recon', 'AP Recon'],
                           ax=ax,
                           alpha=[0.7, 0.7, 0.7],
                           lw=3)
コード例 #2
0
###################################################################################################

# Calculate the power spectrum, using a median welch & extract a frequency range of interest
freqs, powers = compute_spectrum(sig, fs, method='welch', avg_type='median')
freqs, powers = trim_spectrum(freqs, powers, [3, 30])

###################################################################################################

# Check where the peak power is
peak_cf = freqs[np.argmax(powers)]
print(peak_cf)

###################################################################################################

# Plot the power spectra, and note the peak power
plot_power_spectra(freqs, powers)
plt.plot(freqs[np.argmax(powers)], np.max(powers), '.r', ms=12)

###################################################################################################
# Look for Bursts
# ---------------
#
# Now that we have a sense of the main rhythmicity of this piece of data, lets
# explore using NeuroDSP to investigate whether this rhythm is bursty.
#

###################################################################################################

# Burst settings
amp_dual_thresh = (1., 1.5)
f_range = (peak_cf - 2, peak_cf + 2)
コード例 #3
0
ファイル: plot_IRASA.py プロジェクト: jennyqsun/neurodsp
# Define the frequency range of interest for the analysis
f_range = (1, 40)

# Create the simulate time series
sig = sim_combined(n_seconds, fs, components)

###################################################################################################

# Compute the power spectrum of the simulated signal
freqs, psd = compute_spectrum(sig, fs, nperseg=4 * fs)

# Trim the power spectrum to the frequency range of interest
freqs, psd = trim_spectrum(freqs, psd, f_range)

# Plot the computed power spectrum
plot_power_spectra(freqs, psd, title="Original Spectrum")

###################################################################################################
#
# In the above spectrum, we can see a pattern of power across all frequencies, which reflects
# the 1/f activity, as well as a peak at 10 Hz, which represents the simulated oscillation.
#

###################################################################################################
# IRASA
# -----
#
# In the analysis of neural data, we may want to separate aperiodic and periodic components
# of the data. Here, we explore using IRASA to do so.
#
# Algorithm Settings