コード例 #1
0
def add_neuron(s, df, neuron_ids=[], show_ellipsoid_annotation=False):
    if len(neuron_ids) == 0:
        neuron_ids = list(np.unique(df.neuron_id))
    for ii, neuron_id in enumerate(neuron_ids):
        color = "#%06x" % random.randint(0, 0xFFFFFF)
        pos_dic = {}
        df_neuron = df[df.neuron_id == neuron_id]
        edges = []
        for index, row in df_neuron.iterrows():
            node_id = row.id
            pos = np.array(row.position)
            pos_dic[node_id] = np.flip(pos)
            if row.parent_id:
                edges.append((node_id, row.parent_id))

        v_nodes, u_nodes, connectors = [], [], []
        print(f'Loaded {len(pos_dic)} nodes for neuron id {neuron_id}')
        for u, v in edges:
            if u in pos_dic and v in pos_dic:
                u_site = pos_dic[u]
                v_site = pos_dic[v]

                u_nodes.append(
                    neuroglancer.EllipsoidAnnotation(center=u_site,
                                                     radii=(30, 30, 30),
                                                     id=next(ngid)))
                v_nodes.append(
                    neuroglancer.EllipsoidAnnotation(center=v_site,
                                                     radii=(30, 30, 30),
                                                     id=next(ngid)))
                connectors.append(
                    neuroglancer.LineAnnotation(point_a=u_site,
                                                point_b=v_site,
                                                id=next(ngid)))

        s.layers['neuronskeleton_{}'.format(
            neuron_id)] = neuroglancer.AnnotationLayer(
                voxel_size=(1, 1, 1),
                filter_by_segmentation=False,
                annotation_color=color,
                annotations=connectors,
            )
        if show_ellipsoid_annotation:
            s.layers['node_u_{}'.format(
                neuron_id)] = neuroglancer.AnnotationLayer(
                    voxel_size=(1, 1, 1),
                    filter_by_segmentation=False,
                    annotation_color=color,
                    annotations=u_nodes,
                )
            s.layers['node_v_{}'.format(
                neuron_id)] = neuroglancer.AnnotationLayer(
                    voxel_size=(1, 1, 1),
                    filter_by_segmentation=False,
                    annotation_color=color,
                    annotations=v_nodes,
                )
コード例 #2
0
def add_synapses(s,
                 df,
                 pre_neuron_id=None,
                 post_neuron_id=None,
                 color=None,
                 name='',
                 radius=30):
    if pre_neuron_id is not None:
        df = df[df.id_skel_pre == pre_neuron_id]
    if post_neuron_id is not None:
        df = df[df.id_skel_post == post_neuron_id]

    pre_sites, post_sites, connectors = [], [], []
    print('Displaying {} of synapses'.format(len(df)))
    for index, syn in df.iterrows():
        pre_site = np.flip(syn.location_pre)
        post_site = np.flip(syn.location_post)

        pre_sites.append(
            neuroglancer.EllipsoidAnnotation(center=pre_site,
                                             radii=(radius, radius, radius),
                                             id=next(ngid)))
        post_sites.append(
            neuroglancer.EllipsoidAnnotation(center=post_site,
                                             radii=(radius, radius, radius),
                                             id=next(ngid)))
        connectors.append(
            neuroglancer.LineAnnotation(point_a=pre_site,
                                        point_b=post_site,
                                        id=next(ngid)))

    s.layers['synlinks_{}'.format(name)] = neuroglancer.AnnotationLayer(
        voxel_size=(1, 1, 1),
        filter_by_segmentation=False,
        annotation_color=color,
        annotations=connectors,
    )
コード例 #3
0
def add_ellipsoid_annotations(viewer,
                              centers,
                              radii,
                              layer_name,
                              color=(1, 1, 1)):
    extant_layers = [l.name for l in viewer.state.layers]
    if layer_name not in extant_layers:
        add_annotation_layer(viewer, layer_name)
        print("Adding layer {}".format(layer_name))

    with viewer.txn() as s:
        s.layers[layer_name].annotationColor = cl.to_hex(color)
        for ind, row in enumerate(centers):
            s.layers[layer_name].annotations.append(
                neuroglancer.EllipsoidAnnotation(
                    center=np.array(row, dtype=np.float),
                    radii=np.array(xyz1[ind, :], dtype=np.int),
                    id=neuroglancer.random_token.make_random_token()))
    set_annotation_color(viewer, layer_name=layer_name, color=color)
    return viewer
コード例 #4
0
def visualize_synapses_in_neuroglancer(s,
                                       synapses,
                                       score_thr=-1,
                                       radius=30,
                                       show_ellipsoid_annotation=False,
                                       name='',
                                       color='#00ff00'):
    pre_sites = []
    post_sites = []
    connectors = []
    below_score = 0
    neuro_id = 0
    for syn in synapses:
        if syn.score is None:
            add_synapse = True
        else:
            add_synapse = syn.score > score_thr
        if not add_synapse:
            below_score += 1
        else:
            pre_site = np.flip(syn.location_pre)
            post_site = np.flip(syn.location_post)
            description = f"id: {syn.id}, pre_seg: {syn.id_segm_pre}, post_seg: {syn.id_segm_post}, score: {syn.score}"
            pre_sites.append(
                neuroglancer.EllipsoidAnnotation(center=pre_site,
                                                 radii=(radius, radius,
                                                        radius),
                                                 id=neuro_id + 1))
            post_sites.append(
                neuroglancer.EllipsoidAnnotation(center=post_site,
                                                 radii=(radius, radius,
                                                        radius),
                                                 id=neuro_id + 2))
            connectors.append(
                neuroglancer.LineAnnotation(point_a=pre_site,
                                            point_b=post_site,
                                            id=neuro_id + 3,
                                            description=description))
            neuro_id += 3

    s.layers['connectors_{}'.format(name)] = neuroglancer.AnnotationLayer(
        voxel_size=(1, 1, 1),
        filter_by_segmentation=False,
        annotation_color=color,
        annotations=connectors,
    )
    if show_ellipsoid_annotation:
        s.layers['pre_sites'] = neuroglancer.AnnotationLayer(
            voxel_size=(1, 1, 1),
            filter_by_segmentation=False,
            annotation_color='#00ff00',
            annotations=pre_sites,
        )
        s.layers['post_sites'] = neuroglancer.AnnotationLayer(
            voxel_size=(1, 1, 1),
            filter_by_segmentation=False,
            annotation_color='#ff00ff',
            annotations=post_sites,
        )
    print('filtered out {}/{} of synapses'.format(below_score, len(synapses)))
    print('displaying {} synapses'.format(len(post_sites)))
    return synapses
コード例 #5
0
            except KeyError:
                pass
        data_k["edge_connectors"] = edge_connectors

    if nodes:
        maxima = []
        maxima_dict = {}
        if not selected_only:
            for node_id, node_data in nodes.items():
                x = node_data[2]
                y = node_data[1]
                z = node_data[0]
                maxima_dict[node_id] = (x, y, z)
                maxima.append(
                    neuroglancer.EllipsoidAnnotation(center=(x, y, z),
                                                     radii=(tuple([10] * 3)),
                                                     id=node_id,
                                                     segments=None))
            data_k["maxima"] = maxima

        else:
            for node_id in nodes_in_edges:
                x = nodes[node_id][2]
                y = nodes[node_id][1]
                z = nodes[node_id][0]
                maxima_dict[node_id] = (x, y, z)
                maxima.append(
                    neuroglancer.EllipsoidAnnotation(center=(x, y, z),
                                                     radii=(tuple([10] * 3)),
                                                     id=node_id,
                                                     segments=None))
            data_k["maxima"] = maxima
コード例 #6
0
            print(array.roi)
            print(array.voxel_size)
            add_layer(s, array, dataset)

if args.graphs:
    for f, graphs in zip(args.file, args.graphs):

        for graph in graphs:

            graph_annotations = []
            ids = daisy.open_ds(f, graph + '-ids')
            loc = daisy.open_ds(f, graph + '-locations')
            for i, l in zip(ids.data, loc.data):
                graph_annotations.append(
                    neuroglancer.EllipsoidAnnotation(center=l[::-1],
                                                     radii=(5, 5, 5),
                                                     id=i))
            graph_layer = neuroglancer.AnnotationLayer(
                annotations=graph_annotations, voxel_size=(1, 1, 1))

            with viewer.txn() as s:
                s.layers.append(name='graph', layer=graph_layer)

url = str(viewer)
print(url)
if os.environ.get("DISPLAY") and not args.no_browser:
    webbrowser.open_new(url)

print("Press ENTER to quit")
input()
コード例 #7
0
def vis_points_with_array(raw: np.ndarray, points: nx.DiGraph,
                          voxel_size: np.ndarray):
    ngid = itertools.count(start=1)

    neuroglancer.set_server_bind_address("0.0.0.0")
    viewer = neuroglancer.Viewer()

    nodes = []
    edges = []

    for node_a, node_b in points.edges:
        a = points.nodes[node_a]["location"][::-1]
        b = points.nodes[node_b]["location"][::-1]

        pos_u = a
        pos_v = b

        nodes.append(
            neuroglancer.EllipsoidAnnotation(center=pos_u,
                                             radii=(3, 3, 3) / voxel_size,
                                             id=next(ngid)))
        edges.append(
            neuroglancer.LineAnnotation(point_a=pos_u,
                                        point_b=pos_v,
                                        id=next(ngid)))
    nodes.append(
        neuroglancer.EllipsoidAnnotation(center=pos_v,
                                         radii=(1, 1, 1) / voxel_size,
                                         id=next(ngid)))

    print(raw.shape)

    max_raw = np.max(raw)
    min_raw = np.min(raw)
    diff_raw = max_raw - min_raw

    try:
        raw = ((raw - min_raw) / float(diff_raw) * 255).astype("uint8")
    except Exception as e:
        print(min_raw, max_raw)
        raise e

    with viewer.txn() as s:
        s.layers["raw"] = neuroglancer.ImageLayer(
            source=neuroglancer.LocalVolume(data=raw.transpose([2, 1, 0]),
                                            voxel_size=voxel_size))
        s.layers["edges"] = neuroglancer.AnnotationLayer(
            voxel_size=voxel_size,
            filter_by_segmentation=False,
            annotation_color="#add8e6",
            annotations=edges,
        )
        s.layers["nodes"] = neuroglancer.AnnotationLayer(
            voxel_size=voxel_size,
            filter_by_segmentation=False,
            annotation_color="#ff00ff",
            annotations=nodes,
        )
        position = np.array(raw.shape) // 2
        s.navigation.position.voxelCoordinates = tuple(position)
    print(viewer)

    input("done?")
コード例 #8
0
voxel_size_rounded = np.array((10, 3, 3)[::-1])


nodes = []
edges = []
print(len(neuron_graph.nodes))
for node_a, node_b in neuron_graph.edges:
    a = swc_to_voxel_coords(neuron_graph.nodes[node_a]["location"], origin, spacing)
    b = swc_to_voxel_coords(neuron_graph.nodes[node_b]["location"], origin, spacing)

    pos_u = a
    pos_v = b

    nodes.append(
        neuroglancer.EllipsoidAnnotation(
            center=pos_u, radii=(3, 3, 3) / voxel_size, id=next(ngid)
        )
    )
    edges.append(
        neuroglancer.LineAnnotation(point_a=pos_u, point_b=pos_v, id=next(ngid))
    )
    if len(nodes) > 10000:
        break
nodes.append(
    neuroglancer.EllipsoidAnnotation(
        center=pos_v, radii=(1, 1, 1) / voxel_size, id=next(ngid)
    )
)


a = daisy.open_ds(str(n5_path.absolute()), "volume")