コード例 #1
0
ファイル: tests_ppg.py プロジェクト: nagapavan525/NeuroKit
def test_ppg_simulate():

    ppg1 = nk.ppg_simulate(duration=20, sampling_rate=500, heart_rate=70,
                           frequency_modulation=.3, ibi_randomness=.25,
                           drift=1, motion_amplitude=.5,
                           powerline_amplitude=.1, burst_amplitude=1,
                           burst_number=5, random_state=42, show=False)
    assert ppg1.size == 20 * 500

    ppg2 = nk.ppg_simulate(duration=200, sampling_rate=1000, heart_rate=70,
                           frequency_modulation=.3, ibi_randomness=.25,
                           drift=1, motion_amplitude=.5,
                           powerline_amplitude=.1, burst_amplitude=1,
                           burst_number=5, random_state=42, show=False)
    assert ppg2.size == 200 * 1000

    # Ensure that frequency_modulation does not affect other signal properties.
    ppg3 = nk.ppg_simulate(duration=200, sampling_rate=1000, heart_rate=70,
                           frequency_modulation=1, ibi_randomness=.25,
                           drift=1, motion_amplitude=.5,
                           powerline_amplitude=.1, burst_amplitude=1,
                           burst_number=5, random_state=42, show=False)
    assert np.allclose((ppg2.mean() - ppg3.mean()), 0, atol=1e-2)
    assert np.allclose((ppg2.std() - ppg3.std()), 0, atol=1e-2)

    # Ensure that ibi_randomness does not affect other signal properties.
    ppg4 = nk.ppg_simulate(duration=200, sampling_rate=1000, heart_rate=70,
                           frequency_modulation=1, ibi_randomness=1,
                           drift=1, motion_amplitude=.5,
                           powerline_amplitude=.1, burst_amplitude=1,
                           burst_number=5, random_state=42, show=False)
    assert np.allclose((ppg3.mean() - ppg4.mean()), 0, atol=1e-1)
    assert np.allclose((ppg3.std() - ppg4.std()), 0, atol=1e-1)
コード例 #2
0
def test_ppg_clean():

    sampling_rate = 500

    ppg = nk.ppg_simulate(
        duration=30,
        sampling_rate=sampling_rate,
        heart_rate=180,
        frequency_modulation=0.01,
        ibi_randomness=0.1,
        drift=1,
        motion_amplitude=0.5,
        powerline_amplitude=0.1,
        burst_amplitude=1,
        burst_number=5,
        random_state=42,
        show=False,
    )
    ppg_cleaned_elgendi = nk.ppg_clean(ppg,
                                       sampling_rate=sampling_rate,
                                       method="elgendi")

    assert ppg.size == ppg_cleaned_elgendi.size

    # Assert that bandpass filter with .5 Hz lowcut and 8 Hz highcut was applied.
    fft_raw = np.abs(np.fft.rfft(ppg))
    fft_elgendi = np.abs(np.fft.rfft(ppg_cleaned_elgendi))

    freqs = np.fft.rfftfreq(ppg.size, 1 / sampling_rate)

    assert np.sum(fft_raw[freqs < 0.5]) > np.sum(fft_elgendi[freqs < 0.5])
    assert np.sum(fft_raw[freqs > 8]) > np.sum(fft_elgendi[freqs > 8])
コード例 #3
0
def test_ppg_simulate(duration, sampling_rate, heart_rate, freq_modulation):

    ppg = nk.ppg_simulate(
        duration=duration,
        sampling_rate=sampling_rate,
        heart_rate=heart_rate,
        frequency_modulation=freq_modulation,
        ibi_randomness=0,
        drift=0,
        motion_amplitude=0,
        powerline_amplitude=0,
        burst_amplitude=0,
        burst_number=0,
        random_state=42,
        show=False,
    )

    assert ppg.size == duration * sampling_rate

    signals, _ = nk.ppg_process(ppg, sampling_rate=sampling_rate)
    assert np.allclose(signals["PPG_Rate"].mean(), heart_rate, atol=1)

    # Ensure that the heart rate fluctuates in the requested range.
    groundtruth_range = freq_modulation * heart_rate
    observed_range = np.percentile(signals['PPG_Rate'], 90) - np.percentile(
        signals['PPG_Rate'], 10)
    assert np.allclose(groundtruth_range,
                       observed_range,
                       atol=groundtruth_range * .15)
コード例 #4
0
def test_ppg_findpeaks():

    sampling_rate = 500

    ppg = nk.ppg_simulate(
        duration=30,
        sampling_rate=sampling_rate,
        heart_rate=60,
        frequency_modulation=0.01,
        ibi_randomness=0.1,
        drift=1,
        motion_amplitude=0.5,
        powerline_amplitude=0.1,
        burst_amplitude=1,
        burst_number=5,
        random_state=42,
        show=True,
    )
    ppg_cleaned_elgendi = nk.ppg_clean(ppg,
                                       sampling_rate=sampling_rate,
                                       method="elgendi")

    info_elgendi = nk.ppg_findpeaks(ppg_cleaned_elgendi,
                                    sampling_rate=sampling_rate,
                                    show=True)

    peaks = info_elgendi["PPG_Peaks"]

    assert peaks.size == 29
    assert peaks.sum() == 219763
コード例 #5
0
def test_ppg_simulate_ibi(ibi_randomness, std_heart_rate):

    ppg = nk.ppg_simulate(
        duration=20,
        sampling_rate=50,
        heart_rate=70,
        frequency_modulation=0,
        ibi_randomness=ibi_randomness,
        drift=0,
        motion_amplitude=0,
        powerline_amplitude=0,
        burst_amplitude=0,
        burst_number=0,
        random_state=42,
        show=False,
    )

    assert ppg.size == 20 * 50

    signals, _ = nk.ppg_process(ppg, sampling_rate=50)
    assert np.allclose(signals["PPG_Rate"].mean(), 70, atol=1.5)

    # Ensure that standard deviation of heart rate
    assert np.allclose(signals["PPG_Rate"].std(), std_heart_rate, atol=1)
コード例 #6
0
ファイル: README_examples.py プロジェクト: ayushmh/NeuroKit
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import neurokit2 as nk

# =============================================================================
# Simulate physiological signals
# =============================================================================

# Generate synthetic signals
ecg = nk.ecg_simulate(duration=10, heart_rate=70)
ppg = nk.ppg_simulate(duration=10, heart_rate=70)
rsp = nk.rsp_simulate(duration=10, respiratory_rate=15)
eda = nk.eda_simulate(duration=10, scr_number=3)
emg = nk.emg_simulate(duration=10, burst_number=2)

# Visualise biosignals
data = pd.DataFrame({
    "ECG": ecg,
    "PPG": ppg,
    "RSP": rsp,
    "EDA": eda,
    "EMG": emg
})
nk.signal_plot(data, subplots=True)

# Save it
data = pd.DataFrame({
    "ECG":
    nk.ecg_simulate(duration=10, heart_rate=70, noise=0),
    "PPG":