コード例 #1
0
ファイル: utils.py プロジェクト: yamagatm/NeuroM
 def _filepath(self, name):
     """ File path to `name` morphology file. """
     if self.file_ext is None:
         candidates = glob.glob(os.path.join(self.directory, name + ".*"))
         try:
             return next(filter(_is_morphology_file, candidates))
         except StopIteration:
             raise NeuroMError("Can not find morphology file for '%s' " % name)
     else:
         return os.path.join(self.directory, name + self.file_ext)
コード例 #2
0
def load_data(filename):
    '''Unpack data into a raw data wrapper'''
    ext = os.path.splitext(filename)[1].lower()

    if ext not in _READERS:
        raise NeuroMError('Do not have a loader for "%s" extension' % ext)

    try:
        return _READERS[ext](filename)
    except Exception:
        L.exception('Error reading file %s, using "%s" loader', filename, ext)
        raise RawDataError('Error reading file %s' % filename)
コード例 #3
0
ファイル: utils.py プロジェクト: yamagatm/NeuroM
def load_data(handle, reader=None):
    '''Unpack data into a raw data wrapper'''
    if not reader:
        reader = os.path.splitext(handle)[1][1:].lower()

    if reader not in _READERS:
        raise NeuroMError('Do not have a loader for "%s" extension' % reader)

    filename = _get_file(handle)
    try:
        return _READERS[reader](filename)
    except Exception as e:
        L.exception('Error reading file %s, using "%s" loader', filename, reader)
        raise RawDataError('Error reading file %s:\n%s' % (filename, str(e)))
コード例 #4
0
ファイル: neuron_checks.py プロジェクト: markovg/NeuroM
def has_no_dangling_branch(neuron):
    """Check if the neuron has dangling neurites.

    Are considered dangling

    - dendrites whose first point is too far from the soma center
    - axons whose first point is too far from the soma center AND from
      any point belonging to a dendrite

    Arguments:
        neuron(Neuron): The neuron object to test

    Returns:
        CheckResult with a list of all first segments of dangling neurites
    """
    if len(neuron.soma.points) == 0:
        raise NeuroMError(
            'Can\'t check for dangling neurites if there is no soma')
    soma_center = neuron.soma.points[:, COLS.XYZ].mean(axis=0)
    recentered_soma = neuron.soma.points[:, COLS.XYZ] - soma_center
    radius = np.linalg.norm(recentered_soma, axis=1)
    soma_max_radius = radius.max()

    dendritic_points = np.array(
        list(
            chain.from_iterable(n.points for n in iter_neurites(neuron)
                                if n.type != NeuriteType.axon)))

    def is_dangling(neurite):
        """Is the neurite dangling ?."""
        starting_point = neurite.points[0][COLS.XYZ]

        if np.linalg.norm(starting_point -
                          soma_center) - soma_max_radius <= 12.:
            return False

        if neurite.type != NeuriteType.axon:
            return True

        distance_to_dendrites = np.linalg.norm(dendritic_points[:, COLS.XYZ] -
                                               starting_point,
                                               axis=1)
        return np.all(
            distance_to_dendrites >= 2 * dendritic_points[:, COLS.R] + 2)

    bad_ids = [(n.root_node.id, [n.root_node.points[0]])
               for n in iter_neurites(neuron) if is_dangling(n)]
    return CheckResult(len(bad_ids) == 0, bad_ids)
コード例 #5
0
ファイル: utils.py プロジェクト: markovg/NeuroM
def load_neurons(neurons,
                 neuron_loader=load_neuron,
                 name=None,
                 population_class=Population,
                 ignored_exceptions=()):
    """Create a population object.

    From all morphologies in a directory of from morphologies in a list of file names.

    Arguments:
        neurons: directory path or list of neuron file paths
        neuron_loader: function taking a filename and returning a neuron
        population_class: class representing populations
        name (str): optional name of population. By default 'Population' or\
            filepath basename depending on whether neurons is list or\
            directory path respectively.
        ignored_exceptions (tuple): NeuroM and MorphIO exceptions that you want to ignore when
            loading neurons.

    Returns:
        neuron population object
    """
    if isinstance(neurons, str):
        neurons = Path(neurons)

    if isinstance(neurons, Path):
        files = get_files_by_path(neurons)
        name = name or neurons.name
    else:
        files = neurons
        name = name or 'Population'

    ignored_exceptions = tuple(ignored_exceptions)
    pop = []
    for f in files:
        try:
            pop.append(neuron_loader(f))
        except (NeuroMError, MorphioError) as e:
            if isinstance(e, ignored_exceptions):
                L.info('Ignoring exception "%s" for file %s', e, f.name)
                continue
            raise NeuroMError('`load_neurons` failed') from e

    return population_class(pop, name=name)
コード例 #6
0
ファイル: __init__.py プロジェクト: markovg/NeuroM
def _register_feature(namespace, name, func, shape):
    """Register a feature to be applied.

    Upon registration, an attribute 'shape' containing the expected
    shape of the function return is added to 'func'.

    Arguments:
        namespace(string): a namespace (must be 'NEURITEFEATURES' or 'NEURONFEATURES')
        name(string): name of the feature, used to access the feature via `neurom.features.get()`.
        func(callable): single parameter function of a neurite.
        shape(tuple): the expected shape of the feature values
    """
    setattr(func, 'shape', shape)

    assert namespace in {'NEURITEFEATURES', 'NEURONFEATURES'}
    feature_dict = globals()[namespace]

    if name in feature_dict:
        raise NeuroMError('Attempt to hide registered feature %s' % name)
    feature_dict[name] = func
コード例 #7
0
ファイル: __init__.py プロジェクト: markovg/NeuroM
def _find_feature_func(feature_name):
    """Returns the python function used when getting a feature with `neurom.get(feature_name)`."""
    for feature_dict in (NEURITEFEATURES, NEURONFEATURES):
        if feature_name in feature_dict:
            return feature_dict[feature_name]
    raise NeuroMError(f'Unable to find feature: {feature_name}')
コード例 #8
0
ファイル: bifurcationfunc.py プロジェクト: joewgraham/NeuroM
def _raise_if_not_bifurcation(section):
    n_children = len(section.children)
    if n_children != 2:
        raise NeuroMError(
            'A bifurcation point must have exactly 2 children, found {}'.
            format(n_children))