コード例 #1
0
    def handleLocation(self, id, population_id, component, x, y, z):
        self.printLocationInformation(id, population_id, component, x, y, z)
        inst = neuroml.Instance(id=id)

        inst.location = neuroml.Location(x=x, y=y, z=z)
        self.populations[population_id].instances.append(inst)
        self.populations[population_id].type = 'populationList'
コード例 #2
0
ファイル: __init__.py プロジェクト: andrisecker/OpenCortex
def add_single_cell_population(net,
                               pop_id,
                               cell_id,
                               x=0,
                               y=0,
                               z=0,
                               color=None):
    """
    Add a population with id `pop_id` containing a single instance of cell `cell_id`. 
    Optionally specify (`x`,`y`,`z`) and the population `color`.
    """

    pop = neuroml.Population(id=pop_id,
                             component=cell_id,
                             type="populationList",
                             size=1)
    if color is not None:
        pop.properties.append(Property("color", color))
    net.populations.append(pop)

    inst = neuroml.Instance(id=0)
    pop.instances.append(inst)
    inst.location = neuroml.Location(x=x, y=y, z=z)

    return pop
コード例 #3
0
    def handle_location(self, id, population_id, component, x, y, z):
        ##print('Loc: %s %s (%s,%s,%s)'%(id, population_id, x, y, z))
        self.print_location_information(id, population_id, component, x, y, z)
        
        if x is not None and y is not None and z is not None:
            inst = neuroml.Instance(id=id)

            inst.location = neuroml.Location(x=x,y=y,z=z)
            self.populations[population_id].instances.append(inst)
            self.populations[population_id].type = 'populationList'
        else:
            self.log.warning('Ignoring location: %s %s (%s,%s,%s)'%(id, population_id, x, y, z))
コード例 #4
0
    def parse_dataset(self, d):
        print("Parsing dataset/array: " + str(d))
        if self.current_population and d.name == 'locations':

            self.current_population.size = d.shape[0]
            print("   There are %i cells in: %s" %
                  (self.current_population.size, self.current_population.id))
            for i in range(0, d.shape[0]):
                row = d[i, :]
                instance = neuroml.Instance(i)
                instance.location = neuroml.Location(row[0], row[1], row[2])
                self.current_population.instances.append(instance)
コード例 #5
0
ファイル: populations.py プロジェクト: sanjayankur31/PyNN
    def __init__(self, size, cellclass, cellparams=None, structure=None,
                 initial_values={}, label=None):
        super(Population, self).__init__(size, cellclass, cellparams, structure,initial_values, label)

        logger.debug("Created NeuroML Population: %s of size %i" % (self.label, self.size))

        for cell in self.all_cells:
            index = self.id_to_index(cell)
            inst = neuroml.Instance(id=index)
            self.pop.instances.append(inst)
            x = self.positions[0][index]
            y = self.positions[1][index]
            z = self.positions[2][index]
            logger.debug("Creating cell at (%s, %s, %s)"%(x,y,z))
            inst.location = neuroml.Location(x=x,y=y,z=z)
コード例 #6
0
    def __getitem__(self, index):

        if len(self.array[index]) == 4:
            id = self.array[index][self._get_index_or_add('id', 0)]
            #print('    Getting instance %s in %s (%s)'%(index,self,id))
            assert (id == index)
        else:
            id = index

        instance = neuroml.Instance(id=id)
        instance.location = neuroml.Location(
            self.array[index][self._get_index_or_add('x', 1)],
            self.array[index][self._get_index_or_add('y', 2)],
            self.array[index][self._get_index_or_add('z', 3)])

        return instance
コード例 #7
0
def process_celldir(inputs):
    """Process cell directory"""

    count, cell_dir, nml2_cell_dir, total_count = inputs
    local_nml2_cell_dir = os.path.join("..", nml2_cell_dir)

    print(
        '\n\n************************************************************\n\n'
        'Parsing %s (cell %i/%i)\n' % (cell_dir, count, total_count))

    if os.path.isdir(cell_dir):
        old_cwd = os.getcwd()
        os.chdir(cell_dir)
    else:
        old_cwd = os.getcwd()
        os.chdir('../' + cell_dir)

    if make_zips:
        nml2_cell_dir = '%s/%s' % (zips_dir, cell_dir)
        if not os.path.isdir(nml2_cell_dir):
            os.mkdir(nml2_cell_dir)

    print("Generating into %s" % nml2_cell_dir)

    bbp_ref = None

    template_file = open('template.hoc', 'r')
    for line in template_file:
        if line.startswith('begintemplate '):
            bbp_ref = line.split(' ')[1].strip()
            print(
                ' > Assuming cell in directory %s is in a template named %s' %
                (cell_dir, bbp_ref))

    load_cell_file = 'loadcell.hoc'

    variables = {}

    variables['cell'] = bbp_ref
    variables['groups_info_file'] = groups_info_file

    template = """
///////////////////////////////////////////////////////////////////////////////
//
//   NOTE: This file is not part of the original BBP cell model distribution
//   It has been generated by ../ParseAll.py to facilitate loading of the cell
//   into NEURON for exporting the model morphology to NeuroML2
//
//////////////////////////////////////////////////////////////////////////////

load_file("stdrun.hoc")

objref cvode
cvode = new CVode()
cvode.active(1)

//======================== settings ===================================

v_init = -80

hyp_amp = -0.062866
step_amp = 0.3112968
tstop = 3000

//=================== creating cell object ===========================
load_file("import3d.hoc")
objref cell

// Using 1 to force loading of the file, in case file with same name was loaded
// before...
load_file(1, "constants.hoc")
load_file(1, "morphology.hoc")
load_file(1, "biophysics.hoc")
print "Loaded morphology and biophysics..."

load_file(1, "synapses/synapses.hoc")
load_file(1, "template.hoc")
print "Loaded template..."

load_file(1, "createsimulation.hoc")


create_cell(0)
print "Created new cell using loadcell.hoc: {{ cell }}"

define_shape()

wopen("{{ groups_info_file }}")

fprint("//Saving information on groups in this cell...\\n")

fprint("- somatic\\n")
forsec {{ cell }}[0].somatic {
    fprint("%s\\n",secname())
}

fprint("- basal\\n")
forsec {{ cell }}[0].basal {
    fprint("%s\\n",secname())
}

fprint("- axonal\\n")
forsec {{ cell }}[0].axonal {
    fprint("%s\\n",secname())
}
fprint("- apical\\n")
forsec {{ cell }}[0].apical {
    fprint("%s\\n",secname())
}
wopen()
        """

    t = Template(template)

    contents = t.render(variables)

    load_cell = open(load_cell_file, 'w')
    load_cell.write(contents)
    load_cell.close()

    print(' > Written %s' % load_cell_file)

    if os.path.isfile(load_cell_file):

        cell_info = parse_cell_info_file(cell_dir)

        nml_file_name = "%s.net.nml" % bbp_ref
        nml_net_loc = "%s/%s" % (local_nml2_cell_dir, nml_file_name)
        nml_cell_file = "%s_0_0.cell.nml" % bbp_ref
        nml_cell_loc = "%s/%s" % (local_nml2_cell_dir, nml_cell_file)

        print(' > Loading %s and exporting to %s' %
              (load_cell_file, nml_net_loc))

        export_to_neuroml2(load_cell_file,
                           nml_net_loc,
                           separateCellFiles=True,
                           includeBiophysicalProperties=False)

        print(' > Exported to: %s and %s using %s' %
              (nml_net_loc, nml_cell_loc, load_cell_file))

        nml_doc = pynml.read_neuroml2_file(nml_cell_loc)

        cell = nml_doc.cells[0]

        print(' > Adding groups from: %s' % groups_info_file)
        groups = {}
        current_group = None
        for line in open(groups_info_file):
            if not line.startswith('//'):
                if line.startswith('- '):
                    current_group = line[2:-1]
                    print(' > Adding group: [%s]' % current_group)
                    groups[current_group] = []
                else:
                    section = line.split('.')[1].strip()
                    segment_group = section.replace('[', '_').replace(']', '')
                    groups[current_group].append(segment_group)

        for g in groups.keys():
            new_seg_group = neuroml.SegmentGroup(id=g)
            cell.morphology.segment_groups.append(new_seg_group)
            for sg in groups[g]:
                new_seg_group.includes.append(neuroml.Include(sg))
            if g in ['basal', 'apical']:
                new_seg_group.inhomogeneous_parameters.append(
                    neuroml.InhomogeneousParameter(
                        id="PathLengthOver_" + g,
                        variable="p",
                        metric="Path Length from root",
                        proximal=neuroml.ProximalDetails(
                            translation_start="0")))

        ignore_chans = [
            'Ih', 'Ca_HVA', 'Ca_LVAst', 'Ca', "SKv3_1", "SK_E2",
            "CaDynamics_E2", "Nap_Et2", "Im", "K_Tst", "NaTa_t", "K_Pst",
            "NaTs2_t"
        ]

        # ignore_chans=['StochKv','StochKv_deterministic']
        ignore_chans = []

        bp, incl_chans = get_biophysical_properties(
            cell_info['e-type'],
            ignore_chans=ignore_chans,
            templates_json="../templates.json")

        cell.biophysical_properties = bp

        print("Set biophysical properties")

        notes = ''
        notes += \
            "\n\nExport of a cell model obtained from the BBP Neocortical" \
            "Microcircuit Collaboration Portal into NeuroML2" \
            "\n\n******************************************************\n*" \
            "  This export to NeuroML2 has not yet been fully validated!!" \
            "\n*  Use with caution!!\n***********************************" \
            "*******************\n\n"

        if len(ignore_chans) > 0:
            notes += "Ignored channels = %s\n\n" % ignore_chans

        notes += "For more information on this cell model see: " \
            "https://bbp.epfl.ch/nmc-portal/microcircuit#/metype/%s/" \
            "details\n\n" % cell_info['me-type']

        cell.notes = notes
        for channel in incl_chans:

            nml_doc.includes.append(neuroml.IncludeType(href="%s" % channel))

            if make_zips:
                print("Copying %s to zip folder" % channel)
                shutil.copyfile('../../NeuroML2/%s' % channel,
                                '%s/%s' % (local_nml2_cell_dir, channel))

        pynml.write_neuroml2_file(nml_doc, nml_cell_loc)

        stim_ref = 'stepcurrent3'
        stim_ref_hyp = '%s_hyp' % stim_ref
        stim_sim_duration = 3000
        stim_hyp_amp, stim_amp = get_stimulus_amplitudes(bbp_ref)
        stim_del = '700ms'
        stim_dur = '2000ms'

        new_net_loc = "%s/%s.%s.net.nml" % (local_nml2_cell_dir, bbp_ref,
                                            stim_ref)
        new_net_doc = pynml.read_neuroml2_file(nml_net_loc)

        new_net_doc.notes = notes

        stim_hyp = neuroml.PulseGenerator(id=stim_ref_hyp,
                                          delay="0ms",
                                          duration="%sms" % stim_sim_duration,
                                          amplitude=stim_hyp_amp)
        new_net_doc.pulse_generators.append(stim_hyp)
        stim = neuroml.PulseGenerator(id=stim_ref,
                                      delay=stim_del,
                                      duration=stim_dur,
                                      amplitude=stim_amp)
        new_net_doc.pulse_generators.append(stim)

        new_net = new_net_doc.networks[0]

        pop_id = new_net.populations[0].id
        pop_comp = new_net.populations[0].component
        input_list = neuroml.InputList(id="%s_input" % stim_ref_hyp,
                                       component=stim_ref_hyp,
                                       populations=pop_id)

        syn_input = neuroml.Input(id=0,
                                  target="../%s/0/%s" % (pop_id, pop_comp),
                                  destination="synapses")

        input_list.input.append(syn_input)
        new_net.input_lists.append(input_list)

        input_list = neuroml.InputList(id="%s_input" % stim_ref,
                                       component=stim_ref,
                                       populations=pop_id)

        syn_input = neuroml.Input(id=0,
                                  target="../%s/0/%s" % (pop_id, pop_comp),
                                  destination="synapses")

        input_list.input.append(syn_input)
        new_net.input_lists.append(input_list)

        pynml.write_neuroml2_file(new_net_doc, new_net_loc)

        generate_lems_file_for_neuroml(cell_dir,
                                       new_net_loc,
                                       "network",
                                       stim_sim_duration,
                                       0.025,
                                       "LEMS_%s.xml" % cell_dir,
                                       local_nml2_cell_dir,
                                       copy_neuroml=False,
                                       seed=1234)

        pynml.nml2_to_svg(nml_net_loc)

        clear_neuron()

        pop = neuroml.Population(id="Pop_%s" % bbp_ref,
                                 component=bbp_ref + '_0_0',
                                 type="populationList")

        inst = neuroml.Instance(id="0")
        pop.instances.append(inst)

        width = 6
        X = count % width
        Z = (count - X) / width
        inst.location = neuroml.Location(x=300 * X, y=0, z=300 * Z)

        count += 1

        if make_zips:
            zip_file = "%s/%s.zip" % (zips_dir, cell_dir)
            print("Creating zip file: %s" % zip_file)
            with zipfile.ZipFile(zip_file, 'w') as myzip:

                for next_file in os.listdir(local_nml2_cell_dir):
                    next_file = '%s/%s' % (local_nml2_cell_dir, next_file)
                    arcname = next_file[len(zips_dir):]
                    print("Adding : %s as %s" % (next_file, arcname))
                    myzip.write(next_file, arcname)

        os.chdir(old_cwd)

        return nml_cell_file, pop
コード例 #8
0
    file_name = '../examples/test_files/MediumNet.net.nml'

    nml_doc = read_neuroml2_file(file_name, include_includes=True)

    print(nml_doc.summary())

    net0 = nml_doc.networks[0]

    nc = NetworkContainer(id="testnet")
    pc0 = PopulationContainer(id="pre", component="iffy", size=4)
    nc.populations.append(pc0)
    pc = PopulationContainer(id="fake", component="izzy")
    nc.populations.append(pc)
    instance = neuroml.Instance(0)
    instance.location = neuroml.Location(100, 100, 33.333)
    pc.instances.append(instance)
    instance = neuroml.Instance(1)
    instance.location = neuroml.Location(200, 200, 66.66)
    pc.instances.append(instance)

    prc = ProjectionContainer(id="proj",
                              presynaptic_population=pc0.id,
                              postsynaptic_population=pc.id,
                              synapse="ampa")

    conn = neuroml.Connection(id=0,
                                    pre_cell_id="../%s/%i/%s"%(pc0.id,0,pc0.component), \
                                    pre_segment_id=2, \
                                    pre_fraction_along=0.1,
                                    post_cell_id="../%s/%i/%s"%(pc.id,2,pc.id))
コード例 #9
0
def generate_Vm_vs_time_plot(NML2_file, 
                                        cell_id, 
                                     #   inj_amp_nA = 80,
                                     #   delay_ms = 20,
                                     #   inj_dur_ms = 0.5,
                                        sim_dur_ms = 1000, 
                                        dt = 0.05,
                                        temperature = "35",
                                        spike_threshold_mV=0.,
                                        plot_voltage_traces=False,
                                        show_plot_already=True, 
                                        simulator="jNeuroML_NEURON",
                                        include_included=True):
                                            
	# simulation parameters                                            
    nogui = '-nogui' in sys.argv  # Used to supress GUI in tests for Travis-CI
    
    ref = "iMC1_cell_1_origin"
    print_comment_v("Generating Vm(mV) vs Time(ms) plot for cell %s in %s using %s"% # (Inj %snA / %sms dur after %sms delay)"%
        (cell_id, NML2_file, simulator))#, inj_amp_nA, inj_dur_ms, delay_ms))
    
    sim_id = 'Vm_%s'%ref
    duration = sim_dur_ms
    ls = LEMSSimulation(sim_id, sim_dur_ms, dt)
    
    ls.include_neuroml2_file(NML2_file, include_included=include_included)
    ls.assign_simulation_target('network')
    nml_doc = nml.NeuroMLDocument(id=cell_id)
    
    nml_doc.includes.append(nml.IncludeType(href=NML2_file))
    
    net = nml.Network(id="network", type='networkWithTemperature', temperature='%sdegC'%temperature)
    nml_doc.networks.append(net)
    
    #input_id = ("input_%s"%str(inj_amp_nA).replace('.','_'))
    #pg = nml.PulseGenerator(id=input_id,
    #                                delay="%sms"%delay_ms,
    #                                duration='%sms'%inj_dur_ms,
    #                                amplitude='%spA'%inj_amp_nA)
    #nml_doc.pulse_generators.append(pg)
    
    
    pop_id = 'single_cell'
    pop = nml.Population(id=pop_id, component='iMC1_cell_1_origin', size=1, type="populationList")
    
    inst = nml.Instance(id=0)
    pop.instances.append(inst)
    inst.location = nml.Location(x=0, y=0, z=0)
    net.populations.append(pop)
    
    # Add these to cells
    #input_list = nml.InputList(id='il_%s'%input_id,
    #                             component=pg.id,
    #                             populations=pop_id)
    #input = nml.Input(id='0',  target='../hhpop/0/hhcell',
    #                          destination="synapses")  
    
    #input_list.input.append(input)
    #net.input_lists.append(input_list)
    
    sim_file_name = '%s.sim.nml'%sim_id
    pynml.write_neuroml2_file(nml_doc, sim_file_name)
    ls.include_neuroml2_file(sim_file_name)


    disp0 = 'Voltage_display'
    ls.create_display(disp0,"Voltages", "-90", "50")
    ls.add_line_to_display(disp0, "V", "hhpop/0/hhcell/v", scale='1mV')
    
    of0 = 'Volts_file'
    ls.create_output_file(of0, "%s.v.dat"%sim_id)
    ls.add_column_to_output_file(of0, "V", "hhpop/0/hhcell/v")
    
    lems_file_name = ls.save_to_file()
    
    if simulator == "jNeuroML":
        results = pynml.run_lems_with_jneuroml(lems_file_name, 
                                                nogui=True, 
                                                load_saved_data=True, 
                                                plot=plot_voltage_traces,
                                                show_plot_already=False)
    elif simulator == "jNeuroML_NEURON":
        results = pynml.run_lems_with_jneuroml_neuron(lems_file_name, 
                                                nogui=True, 
                                                load_saved_data=True, 
                                                plot=plot_voltage_traces,
                                                show_plot_already=False)
                                                
 
    if show_plot_already:
        from matplotlib import pyplot as plt
        plt.show()
        #plt.plot("t","V")        
        #plt.title("Vm(mV) vs Time(ms) plot for cell %s in %s using %s (Inj %snA / %sms dur after %sms delay)"% 
        #    (cell_id, nml2_file, simulator, inj_amp_nA, inj_dur_ms, delay_ms))
        #plt.xlabel('Time (ms)')
        #plt.ylabel('Vmemb (mV)')
        #plt.legend(['Test'], loc='upper right')
        
        
    return of0     
コード例 #10
0
def generate_network_for_sweeps(cell_type, dataset_id, cell_file_name, cell_id, target_dir, data_dir="../../data"):

    target_sweep_numbers = DH.DATASET_TARGET_SWEEPS[dataset_id]

    net_id = "network_%s_%s"%(dataset_id, cell_type)
    net = neuroml.Network(id=net_id, type="networkWithTemperature", temperature=DH.SIMULATION_TEMPERATURE)


    net_doc = neuroml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)

    net_doc.includes.append(neuroml.IncludeType(cell_file_name))


    number_cells = len(target_sweep_numbers)
    pop = neuroml.Population(id="Pop0",
                        component=cell_id,
                        size=number_cells,
                        type="populationList")
                        
    net.populations.append(pop)
    for i in range(number_cells):
        location = neuroml.Location(x=100*i,y=0,z=0)
        pop.instances.append(neuroml.Instance(id=i,location=location))

    print target_sweep_numbers
    f = "%s/%s_analysis.json"%(data_dir,dataset_id)
    with open(f, "r") as json_file:
        data = json.load(json_file) 

    id = data['data_set_id']
    sweeps = data['sweeps']

    print("Looking at data analysis in %s (dataset: %s)"%(f,id))

    index = 0
    for s in target_sweep_numbers:
        current = float(sweeps['%i'%s]["sweep_metadata"]["aibs_stimulus_amplitude_pa"])
        print("Sweep %s (%s pA)"%(s, current))

        stim_amp = "%s pA"%current
        input_id = ("input_%i"%s)
        pg = neuroml.PulseGenerator(id=input_id,
                                    delay="270ms",
                                    duration="1000ms",
                                    amplitude=stim_amp)
        net_doc.pulse_generators.append(pg)

        input_list = neuroml.InputList(id=input_id,
                                 component=pg.id,
                                 populations=pop.id)
        input = neuroml.Input(id='0', 
                              target="../%s/%i/%s"%(pop.id, index, cell_id), 
                              destination="synapses")
        index+=1
        input_list.input.append(input)
        net.input_lists.append(input_list)

    net_file_name = '%s/%s.net.nml'%(target_dir,net_id)
    
    print("Saving generated network to: %s"%net_file_name)
    pynml.write_neuroml2_file(net_doc, net_file_name)
    
    return net_file_name
コード例 #11
0
ファイル: Vm_plot.py プロジェクト: sanjayankur31/pyNeuroML
def generate_Vm_vs_time_plot(nml2_file,
                             cell_id,
                             inj_amp_nA=80,
                             delay_ms=20,
                             inj_dur_ms=60,
                             sim_dur_ms=100,
                             dt=0.05,
                             plot_voltage_traces=False,
                             show_plot_already=True,
                             simulator="jNeuroML",
                             include_included=True):

    ref = "Test"
    print_comment_v(
        "Generating Vm(mV) vs Time(ms) plot for cell %s in %s using %s (Inj %snA / %sms dur after %sms delay)"
        % (cell_id, nml2_file, simulator, inj_amp_nA, inj_dur_ms, delay_ms))

    sim_id = 'Vm_%s' % ref
    duration = sim_dur_ms
    ls = LEMSSimulation(sim_id, sim_dur_ms, dt)

    ls.include_neuroml2_file(nml2_file, include_included=include_included)
    ls.assign_simulation_target('network')
    nml_doc = nml.NeuroMLDocument(id=cell_id)

    nml_doc.includes.append(nml.IncludeType(href=nml2_file))

    net = nml.Network(id="network")
    nml_doc.networks.append(net)

    input_id = ("input_%s" % str(inj_amp_nA).replace('.', '_'))
    pg = nml.PulseGenerator(id=input_id,
                            delay="%sms" % delay_ms,
                            duration='%sms' % inj_dur_ms,
                            amplitude='%spA' % inj_amp_nA)
    nml_doc.pulse_generators.append(pg)

    pop_id = 'hhpop'
    pop = nml.Population(id=pop_id,
                         component='hhcell',
                         size=1,
                         type="populationList")

    inst = nml.Instance(id=0)
    pop.instances.append(inst)
    inst.location = nml.Location(x=0, y=0, z=0)
    net.populations.append(pop)

    # Add these to cells
    input_list = nml.InputList(id='il_%s' % input_id,
                               component=pg.id,
                               populations=pop_id)
    input = nml.Input(id='0',
                      target='../hhpop/0/hhcell',
                      destination="synapses")

    input_list.input.append(input)
    net.input_lists.append(input_list)

    sim_file_name = '%s.sim.nml' % sim_id
    pynml.write_neuroml2_file(nml_doc, sim_file_name)
    ls.include_neuroml2_file(sim_file_name)

    disp0 = 'Voltage_display'
    ls.create_display(disp0, "Voltages", "-90", "50")
    ls.add_line_to_display(disp0, "V", "hhpop/0/hhcell/v", scale='1mV')

    of0 = 'Volts_file'
    ls.create_output_file(of0, "%s.v.dat" % sim_id)
    ls.add_column_to_output_file(of0, "V", "hhpop/0/hhcell/v")

    lems_file_name = ls.save_to_file()

    if simulator == "jNeuroML":
        results = pynml.run_lems_with_jneuroml(lems_file_name,
                                               nogui=True,
                                               load_saved_data=True,
                                               plot=plot_voltage_traces,
                                               show_plot_already=False)
    elif simulator == "jNeuroML_NEURON":
        results = pynml.run_lems_with_jneuroml_neuron(lems_file_name,
                                                      nogui=True,
                                                      load_saved_data=True,
                                                      plot=plot_voltage_traces,
                                                      show_plot_already=False)

    if show_plot_already:
        from matplotlib import pyplot as plt
        plt.show()

    return of0
コード例 #12
0
def create_GoC_network( duration, dt, seed, N_goc=0, run=False, prob_type='Boltzmann', GJw_type='Vervaeke2010' ):


	goc_filename = 'GoC.cell.nml'
	goc_file = pynml.read_neuroml2_file( goc_filename )
	goc_type = goc_file.cells[0]
	
	GJ_filename = 'GapJuncCML.nml'
	GJ_file = pynml.read_neuroml2_file( GJ_filename )
	GJ_type = GJ_file.gap_junctions[0]

	MFSyn_filename = 'MF_GoC_Syn.nml'
	mfsyn_file = pynml.read_neuroml2_file( MFSyn_filename )
	MFSyn_type = mfsyn_file.exp_three_synapses[0]
	
	MF20Syn_filename = 'MF_GoC_SynMult.nml'
	mf20syn_file = pynml.read_neuroml2_file( MF20Syn_filename )
	MF20Syn_type = mf20syn_file.exp_three_synapses[0]
	
	# Distribute cells in 3D
	if N_goc>0:
		GoC_pos = nu.GoC_locate(N_goc)
	else:
		GoC_pos = nu.GoC_density_locate()
		N_goc = GoC_pos.shape[0]
		
	# get GJ connectivity
	GJ_pairs, GJWt = nu.GJ_conn( GoC_pos, prob_type, GJw_type )
	tmp1, tmp2 = valnet.gapJuncAnalysis( GJ_pairs, GJWt )
	print("Number of gap junctions per cell: ", tmp1)
	print("Net GJ conductance per cell:", tmp2)
	
	# Create pop List
	goc_pop = nml.Population( id=goc_type.id+"Pop", component = goc_type.id, type="populationList", size=N_goc )
	
	# Create NML document for network specification
	net = nml.Network( id="gocNetwork", type="networkWithTemperature" , temperature="23 degC" )
	net_doc = nml.NeuroMLDocument( id=net.id )
	net_doc.networks.append( net )
	net_doc.includes.append( goc_type )
	
	net.populations.append( goc_pop )
	
	#Add locations for GoC instances in the population:
	for goc in range(N_goc):
		inst = nml.Instance( id=goc )
		goc_pop.instances.append( inst )
		inst.location = nml.Location( x=GoC_pos[goc,0], y=GoC_pos[goc,1], z=GoC_pos[goc,2] )
		
	# Define input spiketrains
	input_type = 'spikeGenerator'#'spikeGeneratorPoisson'
	lems_inst_doc = lems.Model()
	mf_inputs = lems.Component( "MF_Input", input_type)
	mf_inputs.set_parameter("period", "2000 ms" )
	#mf_inputs.set_parameter("averageRate", "50 Hz")
	lems_inst_doc.add( mf_inputs )
	
	#synapse_type = 'alphaCurrentSynapse'
	#alpha_syn = lems.Component( "AlphaSyn", synapse_type)
	#alpha_syn.set_parameter("tau", "30 ms" )
	#alpha_syn.set_parameter("ibase", "200 pA")
	#lems_inst_doc.add( alpha_syn )
	
	# Define MF input population
	
	N_mf = 15
	#MF_pop = nml.Population(id=mf_inputs.id+"_pop", component=mf_inputs.id, type="populationList", size=N_mf)
	#net.populations.append( MF_pop )

	mf_type2 = 'spikeGeneratorPoisson'
	#mf_poisson = lems.Component( "MF_Poisson", mf_type2)
	#mf_poisson.set_parameter("averageRate", "5 Hz")
	#lems_inst_doc.add( mf_poisson )
	# adding in neuroml document instead of mf_poisson
	mf_poisson = nml.SpikeGeneratorPoisson( id = "MF_Poisson", average_rate="5 Hz" )
	net_doc.spike_generator_poissons.append( mf_poisson )
	
	net_doc.includes.append( goc_type )
	MF_Poisson_pop = nml.Population(id=mf_poisson.id+"_pop", component=mf_poisson.id, type="populationList", size=N_mf)
	net.populations.append( MF_Poisson_pop )
	MF_pos = nu.GoC_locate( N_mf )
	for mf in range( N_mf ):
		inst = nml.Instance(id=mf)
		MF_Poisson_pop.instances.append( inst )
		inst.location = nml.Location( x=MF_pos[mf,0], y=MF_pos[mf,1], z=MF_pos[mf,2] )
		
	# Setup Mf->GoC synapses
	#MFprojection = nml.Projection(id="MFtoGoC", presynaptic_population=MF_pop.id, postsynaptic_population=goc_pop.id, synapse=alpha_syn.id)
	#net.projections.append(MFprojection)

	MF2projection = nml.Projection(id="MF2toGoC", presynaptic_population=MF_Poisson_pop.id, postsynaptic_population=goc_pop.id, synapse=MFSyn_type.id)#alpha_syn.id
	net.projections.append(MF2projection)


	#Get list of MF->GoC synapse
	mf_synlist = nu.randdist_MF_syn( N_mf, N_goc, pConn=0.3)
	nMFSyn = mf_synlist.shape[1]
	for syn in range( nMFSyn ):
		mf, goc = mf_synlist[:, syn]
		conn2 = nml.Connection(id=syn, pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, mf, mf_poisson.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		MF2projection.connections.append(conn2)
		
		
	# Burst of MF input (as explicit input)
	mf_bursttype = 'transientPoissonFiringSynapse'
	mf_burst = lems.Component( "MF_Burst", mf_bursttype)
	mf_burst.set_parameter( "averageRate", "100 Hz" )
	mf_burst.set_parameter( "delay", "2000 ms" )
	mf_burst.set_parameter( "duration", "500 ms" )
	mf_burst.set_parameter( "synapse", MF20Syn_type.id )
	mf_burst.set_parameter( "spikeTarget", './{}'.format(MF20Syn_type.id) )
	lems_inst_doc.add( mf_burst )
	
	
	# Add few burst inputs
	n_bursts = 4
	gocPerm = np.random.permutation( N_goc )
	ctr = 0
	for gg in range(4):
		goc = gocPerm[gg]
		for jj in range( n_bursts ):
			inst = nml.ExplicitInput( id=ctr, target='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), input=mf_burst.id, synapse=MF20Syn_type.id, spikeTarget='./{}'.format(MF20Syn_type.id))
			net.explicit_inputs.append( inst )
			ctr += 1
		
	
	'''
	one-to-one pairing of MF and GoC -> no shared inputs
	for goc in range(N_mf):
		#inst = nml.Instance(id=goc)
		#MF_pop.instances.append( inst )
		#inst.location = nml.Location( x=GoC_pos[goc,0], y=GoC_pos[goc,1], z=GoC_pos[goc,2]+100 )
		#conn = nml.Connection(id=goc, pre_cell_id='../{}/{}/{}'.format(MF_pop.id, goc, mf_inputs.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		#MFprojection.connections.append(conn)

		goc2 = N_goc-goc-1
		inst2 = nml.Instance(id=goc)
		MF_Poisson_pop.instances.append( inst2 )
		inst2.location = nml.Location( x=GoC_pos[goc2,0], y=GoC_pos[goc2,1], z=GoC_pos[goc2,2]+100 )
		conn2 = nml.Connection(id=goc, pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, goc, mf_poisson.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc2, goc_type.id), post_segment_id='0', post_fraction_along="0.5")
		MF2projection.connections.append(conn2)

	'''
	
	# Add electrical synapses
	GoCCoupling = nml.ElectricalProjection( id="gocGJ", presynaptic_population=goc_pop.id, postsynaptic_population=goc_pop.id )
	
	#print(GJ_pairs)
	gj = nml.GapJunction( id="GJ_0", conductance="426pS" )
	net_doc.gap_junctions.append(gj)
	nGJ = GJ_pairs.shape[0]
	for jj in range( nGJ ):
		#gj.append( lems.Component( "GJ_%d"%jj, 'gapJunction') )
		#gj[jj].set_parameter( "conductance", "%fnS"%(GJWt[jj]) )
		#gj = nml.GapJunction(id="GJ_%d"%jj, conductance="%fnS"%(GJWt[jj]))
		#net_doc.gap_junctions.append(gj)
		#lems_inst_doc.add( gj[jj] )
		#print("%fnS"%(GJWt[jj]*0.426))
		conn = nml.ElectricalConnectionInstanceW( id=jj, pre_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj,0], goc_type.id), pre_segment='1', pre_fraction_along='0.5', post_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj,1], goc_type.id), post_segment='1', post_fraction_along='0.5', synapse=gj.id, weight=GJWt[jj] )#synapse="GapJuncCML" synapse=gj.id , conductance="100E-9mS"
		# ------------ need to create GJ component
		GoCCoupling.electrical_connection_instance_ws.append( conn )
	
	net.electrical_projections.append( GoCCoupling )	
		
		
		
	net_filename = 'gocNetwork.nml'
	pynml.write_neuroml2_file( net_doc, net_filename )
	lems_filename = 'instances.xml'
	pynml.write_lems_file( lems_inst_doc, lems_filename, validate=False )

	simid = 'sim_gocnet'+goc_type.id
	ls = LEMSSimulation( simid, duration=duration, dt=dt, simulation_seed=seed )
	ls.assign_simulation_target( net.id )
	
	#ls.include_lems_file( 'Synapses.xml', include_included=False)
	#ls.include_lems_file( 'Inputs.xml', include_included=False)
	ls.include_neuroml2_file( net_filename)
	ls.include_neuroml2_file( goc_filename)
	ls.include_neuroml2_file( GJ_filename)
	ls.include_neuroml2_file( MFSyn_filename)
	ls.include_neuroml2_file( MF20Syn_filename)
	ls.include_lems_file( lems_filename, include_included=False)
	
	
	# Specify outputs
	eof0 = 'Events_file'
	ls.create_event_output_file(eof0, "%s.v.spikes"%simid,format='ID_TIME')
	for jj in range( goc_pop.size):
		ls.add_selection_to_event_output_file( eof0, jj, '{}/{}/{}'.format( goc_pop.id, jj, goc_type.id), 'spike' )
		
	of0 = 'Volts_file'
	ls.create_output_file(of0, "%s.v.dat"%simid)
	for jj in range( goc_pop.size ):
		ls.add_column_to_output_file(of0, jj, '{}/{}/{}/v'.format( goc_pop.id, jj, goc_type.id))
		
	#Create Lems file to run
	lems_simfile = ls.save_to_file()

	#res = pynml.run_lems_with_jneuroml( lems_simfile, max_memory="1G",nogui=True, plot=False)
	#res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", only_generate_scripts = True, compile_mods = False, nogui=True, plot=False)
	res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", compile_mods = False,nogui=True, plot=False)
	#res=True
	return res
コード例 #13
0
def distance_dependent_positions(cell_position_array,cell_array,distance_criterion_dict,popIndex,seed_number,golgi_pop_object,dim_dict_max_values,\
                      dim_dict_offsets={'x_dim_offset':0,'y_dim_offset':0,'z_dim_offset':0},popSize=None,dim_dict_mappings=None,cell_count=None):

    random.seed(seed_number)

    if distance_criterion_dict['criterion'] == 'no_overlap':
        cell_diameter_array = distance_criterion_dict['cellDiameters']
        cell_diameter = cell_diameter_array[cell_array[popIndex]['popID']]

    if distance_criterion_dict['criterion'] == 'minimal_distance':
        minimal_distance = distance_criterion_dict['minimal_distance']

    if popSize == None:
        popSize = cell_array[popIndex]['size']

    use_cell_count = False
    if cell_count != None:
        use_cell_count = True
    for cell in range(0, popSize):
        if use_cell_count:
            Golgi_cell = neuroml.Instance(id="%d" % cell_count)
            cell_count += 1
        else:
            Golgi_cell = neuroml.Instance(id="%d" % cell)
        golgi_pop_object.instances.append(Golgi_cell)
        cell_position = np.zeros([1, 3])
        if popIndex == 0 and cell == 0:
            X = random.random()
            Y = random.random()
            Z = random.random()
            Xcoordinate = dim_dict_offsets[
                'x_dim_offset'] + dim_dict_max_values['x_dim'] * X
            Ycoordinate = dim_dict_offsets[
                'y_dim_offset'] + dim_dict_max_values['y_dim'] * Y
            Zcoordinate = dim_dict_offsets[
                'z_dim_offset'] + dim_dict_max_values['z_dim'] * Z
            if dim_dict_mappings != None:
                cell_position[0, dim_dict_mappings['dim1']] = Xcoordinate
                cell_position[0, dim_dict_mappings['dim2']] = Ycoordinate
                cell_position[0, dim_dict_mappings['dim3']] = Zcoordinate
            else:
                cell_position[0, 0] = Xcoordinate
                cell_position[0, 1] = Ycoordinate
                cell_position[0, 2] = Zcoordinate
            cell_position_array[cell_array[popIndex]['popID']] = np.vstack(
                (cell_position_array[cell_array[popIndex]['popID']],
                 cell_position))
            Golgi_cell.location = neuroml.Location(x=cell_position[0, 0],
                                                   y=cell_position[0, 1],
                                                   z=cell_position[0, 2])
            print cell_position[0, 0], cell_position[0, 1], cell_position[0, 2]

        else:
            x = 0
            try_cell_position = np.zeros([1, 3])
            while x == 0:
                overlap_counter = 0
                X = random.random()
                Y = random.random()
                Z = random.random()
                Xcoordinate = dim_dict_offsets[
                    'x_dim_offset'] + dim_dict_max_values['x_dim'] * X
                Ycoordinate = dim_dict_offsets[
                    'y_dim_offset'] + dim_dict_max_values['y_dim'] * Y
                Zcoordinate = dim_dict_offsets[
                    'z_dim_offset'] + dim_dict_max_values['z_dim'] * Z
                if dim_dict_mappings != None:
                    try_cell_position[0,
                                      dim_dict_mappings['dim1']] = Xcoordinate
                    try_cell_position[0,
                                      dim_dict_mappings['dim2']] = Ycoordinate
                    try_cell_position[0,
                                      dim_dict_mappings['dim3']] = Zcoordinate
                else:
                    try_cell_position[0, 0] = Xcoordinate
                    try_cell_position[0, 1] = Ycoordinate
                    try_cell_position[0, 2] = Zcoordinate
                Xtry = try_cell_position[0, 0]
                Ytry = try_cell_position[0, 1]
                Ztry = try_cell_position[0, 2]
                for cell_pop_x in range(0, len(cell_array)):
                    pop_cell_positions = cell_position_array[
                        cell_array[cell_pop_x]['popID']]
                    for cell_x in range(0, len(pop_cell_positions)):
                        if pop_cell_positions[cell_x, 0] + pop_cell_positions[
                                cell_x, 1] + pop_cell_positions[cell_x, 2] > 0:

                            if distance_criterion_dict[
                                    'criterion'] == 'no_overlap':
                                if distance(
                                    [Xtry, Ytry, Ztry],
                                        pop_cell_positions[cell_x]
                                ) < (cell_diameter_array[cell_array[popIndex]
                                                         ['popID']] +
                                     cell_diameter_array[cell_array[cell_pop_x]
                                                         ['popID']]) / 2:
                                    overlap_counter += 1
                            else:
                                if distance_criterion_dict[
                                        'criterion'] == 'minimal_distance':
                                    if distance([Xtry, Ytry, Ztry],
                                                pop_cell_positions[cell_x]
                                                ) < minimal_distance:
                                        overlap_counter += 1

                if overlap_counter == 0:
                    cell_position[0, 0] = Xtry
                    cell_position[0, 1] = Ytry
                    cell_position[0, 2] = Ztry

                    cell_position_array[
                        cell_array[popIndex]['popID']] = np.vstack((
                            cell_position_array[cell_array[popIndex]['popID']],
                            cell_position))
                    Golgi_cell.location = neuroml.Location(x=cell_position[0,
                                                                           0],
                                                           y=cell_position[0,
                                                                           1],
                                                           z=cell_position[0,
                                                                           2])

                    print cell_position[0,
                                        0], cell_position[0,
                                                          1], cell_position[0,
                                                                            2]
                    x = 1

    if use_cell_count:
        return cell_position_array, golgi_pop_object, cell_count
    else:
        return cell_position_array, golgi_pop_object
コード例 #14
0
def density_model(location_parameters,
                  cell_position_array,
                  cellType,
                  seed_number,
                  popIndex=None,
                  cell_array=None,
                  cell_diameter_array=None):
    random.seed(seed_number)
    densityFilePath = location_parameters['densityFilePath']
    X_array, Y_array, density_values = load_density_data(densityFilePath)
    dim_X_array = np.shape(X_array)
    print dim_X_array
    dim_Y_array = np.shape(Y_array)
    print dim_Y_array
    print np.shape(density_values)
    ## assume meshgrid
    if dim_X_array == dim_Y_array:
        ## assume that data is not normalized and distribute cells on a specific region on a density sheet
        X_max = np.nanmax(X_array)
        Y_max = np.nanmax(Y_array)
        X_vector = X_array[0]
        Y_vector = Y_array[0:, 0]
        print np.nanmax(X_vector)
        print np.nanmax(Y_vector)
        print X_vector
        print Y_vector
        print len(X_vector)
        print len(Y_vector)
        print np.nanmax(density_values)
        print np.nanmin(density_values)
        left_x_index = None
        right_x_index = None
        low_y_index = None
        high_y_index = None

        left_x_found = False
        right_x_found = False
        low_y_found = False
        high_y_found = False
        for X_value in range(0, len(X_vector)):
            if left_x_found == False:
                if X_vector[X_value] > location_parameters[
                        'dim1CoordinateVector'][0]:
                    left_x_index = X_value
                    left_x_found = True
                    print("found left x boundary %d" % left_x_index)
            if right_x_found == False:
                if X_vector[X_value] > location_parameters[
                        'dim1CoordinateVector'][1]:
                    right_x_index = X_value - 1
                    right_x_found = True
                    print("found right x boundary %d" % right_x_index)
        for Y_value in range(0, len(Y_vector)):
            if low_y_found == False:
                if Y_vector[Y_value] > location_parameters[
                        'dim2CoordinateVector'][0]:
                    low_y_index = Y_value
                    low_y_found = True
                    print("found low y boundary %d" % low_y_index)
            if high_y_found == False:
                if Y_vector[Y_value] > location_parameters[
                        'dim2CoordinateVector'][1]:
                    high_y_index = Y_value - 1
                    high_y_found = True
                    print("found high y boundary %d" % high_y_index)
        if left_x_found and right_x_found and low_y_found and high_y_found:
            X_index_array = range(left_x_index, right_x_index + 1)
            Y_index_array = range(low_y_index, high_y_index + 1)
            print X_index_array
            print Y_index_array
            a = "Region was found"
            ##### assume that the discrete density sheet is in mmm3. thus convert dim3 to mm:
            dim3Boundary = float(location_parameters['dim3Boundary']) / 1000

            base_area = float(
                location_parameters['canonicalVolumeBaseAreainMicrons']) / (
                    10**6)

            canonical_volume = base_area * dim3Boundary

            base_area_microns = float(
                location_parameters['canonicalVolumeBaseAreainMicrons'])
            dim3Boundary_microns = float(location_parameters['dim3Boundary'])

            dim_dict = {'x': 0, 'y': 1, 'z': 2}

            pop_position_array = np.zeros([0, 3])

            total_no_of_cells = 0
            cell_no_per_voxel_array = np.zeros(
                [len(Y_index_array), len(X_index_array)])

            for Y_index in range(0, len(Y_index_array)):
                for X_index in range(0, len(X_index_array)):

                    density_value = density_values[Y_index_array[Y_index],
                                                   X_index_array[X_index]]

                    if int(round(density_value * canonical_volume)) >= 1:

                        no_of_cells_per_density_point = int(
                            round(density_value * canonical_volume))

                    else:
                        if int(
                                round(density_value * canonical_volume, 1)
                        ) == 0.1 and density_value * canonical_volume < 0.1:

                            voxel_probability = density_value * canonical_volume * 10

                        else:

                            voxel_probability = density_value * canonical_volume

                        if voxel_probability > random.random():

                            no_of_cells_per_density_point = 1

                        else:

                            no_of_cells_per_density_point = 0

                    cell_no_per_voxel_array[
                        Y_index, X_index] = no_of_cells_per_density_point

                    total_no_of_cells = total_no_of_cells + no_of_cells_per_density_point

            golgi_pop_object = neuroml.Population(
                id=location_parameters['popID'],
                size=total_no_of_cells,
                type="populationList",
                component=cellType)
            cell_counter = 0
            for Y_index in range(0, len(Y_index_array)):
                for X_index in range(0, len(X_index_array)):
                    X_square_centre = X_array[Y_index_array[Y_index],
                                              X_index_array[X_index]]
                    Y_square_centre = Y_array[Y_index_array[Y_index],
                                              X_index_array[X_index]]
                    no_of_cells_per_density_point = int(
                        round(cell_no_per_voxel_array[Y_index, X_index]))
                    X_left_corner = X_square_centre - (
                        math.sqrt(base_area_microns) / 2)
                    Y_left_corner = Y_square_centre - (
                        math.sqrt(base_area_microns) / 2)

                    if no_of_cells_per_density_point != 0:

                        if location_parameters[
                                'distanceModel'] == "random_minimal_distance":
                            minimal_distance = location_parameters[
                                'minimal_distance']
                            dim_dict_max_values = {}
                            dim_dict_max_values['x_dim'] = math.sqrt(
                                base_area_microns)
                            dim_dict_max_values['y_dim'] = math.sqrt(
                                base_area_microns)
                            dim_dict_max_values['z_dim'] = dim3Boundary_microns
                            dim_dict_offsets = {
                                'x_dim_offset': X_left_corner,
                                'y_dim_offset': Y_left_corner,
                                'z_dim_offset': 0
                            }
                            dim_dict_mappings = {}
                            dim_dict_mappings['dim1'] = dim_dict[
                                location_parameters['planeDimensions']['dim1']]
                            dim_dict_mappings['dim2'] = dim_dict[
                                location_parameters['planeDimensions']['dim2']]
                            dim_dict_mappings['dim3'] = dim_dict[
                                location_parameters['dim3']]

                            distance_dict = {}
                            distance_dict['criterion'] = 'minimal_distance'
                            distance_dict[
                                'minimal_distance'] = minimal_distance
                            cell_position_array,golgi_pop_object,cell_counter=distance_dependent_positions(cell_position_array,cell_array,distance_dict,popIndex,\
                            seed_number,golgi_pop_object,dim_dict_max_values,dim_dict_offsets,no_of_cells_per_density_point,dim_dict_mappings,cell_counter)

                        if location_parameters[
                                'distanceModel'] == "random_no_overlap":
                            dim_dict_max_values = {}
                            dim_dict_max_values['x_dim'] = math.sqrt(
                                base_area_microns)
                            dim_dict_max_values['y_dim'] = math.sqrt(
                                base_area_microns)
                            dim_dict_max_values['z_dim'] = dim3Boundary_microns
                            dim_dict_offsets = {
                                'x_dim_offset': X_left_corner,
                                'y_dim_offset': Y_left_corner,
                                'z_dim_offset': 0
                            }
                            dim_dict_mappings = {}
                            dim_dict_mappings['dim1'] = dim_dict[
                                location_parameters['planeDimensions']['dim1']]
                            dim_dict_mappings['dim2'] = dim_dict[
                                location_parameters['planeDimensions']['dim2']]
                            dim_dict_mappings['dim3'] = dim_dict[
                                location_parameters['dim3']]
                            distance_dict = {}
                            distance_dict['criterion'] = 'no_overlap'
                            distance_dict[
                                'cellDiameters'] = cell_diameter_array
                            cell_position_array,golgi_pop_object,cell_counter=distance_dependent_positions(cell_position_array,cell_array,distance_dict,popIndex,\
    seed_number,golgi_pop_object,dim_dict_max_values,dim_dict_offsets,no_of_cells_per_density_point,dim_dict_mappings,cell_counter)

                        if location_parameters['distanceModel'] == "random":

                            for cell in range(0,
                                              no_of_cells_per_density_point):
                                Golgi_cell = neuroml.Instance(id="%d" %
                                                              (cell_counter))
                                cell_counter += 1
                                X = random.random()
                                Y = random.random()
                                Z = random.random()
                                cell_position = np.zeros([1, 3])

                                cell_position[0, dim_dict[
                                    location_parameters['planeDimensions']
                                    ['dim1']]] = X_left_corner + math.sqrt(
                                        base_area_microns) * X

                                cell_position[0, dim_dict[
                                    location_parameters['planeDimensions']
                                    ['dim2']]] = Y_left_corner + math.sqrt(
                                        base_area_microns) * Y

                                cell_position[0, dim_dict[location_parameters[
                                    'dim3']]] = dim3Boundary_microns * Z

                                cell_position_array[
                                    location_parameters['popID']] = np.vstack(
                                        (cell_position_array[
                                            location_parameters['popID']],
                                         cell_position))

                                Golgi_cell.location = neuroml.Location(
                                    x=cell_position[0, 0],
                                    y=cell_position[0, 1],
                                    z=cell_position[0, 2])
                                golgi_pop_object.instances.append(Golgi_cell)
                                print cell_position[cell, 0], cell_position[
                                    cell, 1], cell_position[cell, 2]

    ### override any specified value of population Size

    return cell_position_array, total_no_of_cells, golgi_pop_object
コード例 #15
0
def generate_grc_layer_network(
        p_mf_ON,
        duration,
        dt,
        minimumISI,  # ms
        ONRate,  # Hz 
        OFFRate,  # Hz
        run=False):

    # Load connectivity matrix

    file = open('GCLconnectivity.pkl')
    p = pkl.load(file)
    conn_mat = p['conn_mat']
    N_mf, N_grc = conn_mat.shape
    assert (np.all(conn_mat.sum(
        axis=0) == 4)), 'Connectivity matrix is incorrect.'

    # Load GrC and MF rosette positions

    grc_pos = p['grc_pos']
    glom_pos = p['glom_pos']

    # Choose which mossy fibers are on, which are off

    N_mf_ON = int(N_mf * p_mf_ON)
    mf_indices_ON = random.sample(range(N_mf), N_mf_ON)
    mf_indices_ON.sort()

    N_mf_OFF = N_mf - N_mf_ON
    mf_indices_OFF = [x for x in range(N_mf) if x not in mf_indices_ON]
    mf_indices_OFF.sort()

    # load NeuroML components, LEMS components and LEMS componentTypes from external files

    ##spikeGeneratorRefPoisson is now a standard nml type...
    ##spike_generator_doc = pynml.read_lems_file(spike_generator_file_name)

    iaF_GrC = nml.IafRefCell(id="iaF_GrC",
                             refract="2ms",
                             C="3.22pF",
                             thresh="-40mV",
                             reset="-63mV",
                             leak_conductance="1.498nS",
                             leak_reversal="-79.67mV")

    ampa_syn_filename = "RothmanMFToGrCAMPA.xml"
    nmda_syn_filename = "RothmanMFToGrCNMDA.xml"

    rothmanMFToGrCAMPA_doc = pynml.read_lems_file(ampa_syn_filename)
    rothmanMFToGrCNMDA_doc = pynml.read_lems_file(nmda_syn_filename)

    # define some components from the componentTypes we just loaded
    ##spike_generator_ref_poisson_type = spike_generator_doc.component_types['spikeGeneratorRefPoisson']

    lems_instances_doc = lems.Model()
    spike_generator_ref_poisson_type_name = 'spikeGeneratorRefPoisson'

    spike_generator_on = lems.Component("mossySpikerON",
                                        spike_generator_ref_poisson_type_name)
    spike_generator_on.set_parameter("minimumISI", "%s ms" % minimumISI)
    spike_generator_on.set_parameter("averageRate", "%s Hz" % ONRate)
    lems_instances_doc.add(spike_generator_on)

    spike_generator_off = lems.Component(
        "mossySpikerOFF", spike_generator_ref_poisson_type_name)
    spike_generator_off.set_parameter("minimumISI", "%s ms" % minimumISI)
    spike_generator_off.set_parameter("averageRate", "%s Hz" % OFFRate)
    lems_instances_doc.add(spike_generator_off)

    rothmanMFToGrCAMPA = rothmanMFToGrCAMPA_doc.components[
        'RothmanMFToGrCAMPA'].id
    rothmanMFToGrCNMDA = rothmanMFToGrCNMDA_doc.components[
        'RothmanMFToGrCNMDA'].id

    # create populations
    GrCPop = nml.Population(id=iaF_GrC.id + "Pop",
                            component=iaF_GrC.id,
                            type="populationList",
                            size=N_grc)
    GrCPop.properties.append(nml.Property(tag='color', value='0 0 0.8'))
    GrCPop.properties.append(nml.Property(tag='radius', value=2))
    mossySpikersPopON = nml.Population(id=spike_generator_on.id + "Pop",
                                       component=spike_generator_on.id,
                                       type="populationList",
                                       size=N_mf_ON)
    mossySpikersPopON.properties.append(
        nml.Property(tag='color', value='0.8 0 0'))
    mossySpikersPopON.properties.append(nml.Property(tag='radius', value=2))
    mossySpikersPopOFF = nml.Population(id=spike_generator_off.id + "Pop",
                                        component=spike_generator_off.id,
                                        size=N_mf_OFF)
    mossySpikersPopOFF.properties.append(
        nml.Property(tag='color', value='0 0.8 0'))
    mossySpikersPopOFF.properties.append(nml.Property(tag='radius', value=2))

    # create network and add populations
    net = nml.Network(id="network")
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net_doc.iaf_ref_cells.append(iaF_GrC)
    net.populations.append(GrCPop)
    net.populations.append(mossySpikersPopON)
    net.populations.append(mossySpikersPopOFF)

    #net_doc.includes.append(nml.IncludeType(href=iaf_nml2_file_name))

    # Add locations for GCs

    for grc in range(N_grc):
        inst = nml.Instance(id=grc)
        GrCPop.instances.append(inst)
        inst.location = nml.Location(x=grc_pos[grc, 0],
                                     y=grc_pos[grc, 1],
                                     z=grc_pos[grc, 2])

    # ON MFs: locations and connectivity

    ONprojectionAMPA = nml.Projection(
        id="ONProjAMPA",
        presynaptic_population=mossySpikersPopON.id,
        postsynaptic_population=GrCPop.id,
        synapse=rothmanMFToGrCAMPA)
    ONprojectionNMDA = nml.Projection(
        id="ONProjNMDA",
        presynaptic_population=mossySpikersPopON.id,
        postsynaptic_population=GrCPop.id,
        synapse=rothmanMFToGrCNMDA)
    net.projections.append(ONprojectionAMPA)
    net.projections.append(ONprojectionNMDA)

    ix = 0
    for mf_ix_ON in range(N_mf_ON):
        mf_ix = mf_indices_ON[mf_ix_ON]
        inst = nml.Instance(id=mf_ix_ON)
        mossySpikersPopON.instances.append(inst)
        inst.location = nml.Location(x=glom_pos[mf_ix, 0],
                                     y=glom_pos[mf_ix, 1],
                                     z=glom_pos[mf_ix, 2])
        # find which granule cells are neighbors
        innervated_grcs = np.where(conn_mat[mf_ix, :] == 1)[0]
        for grc_ix in innervated_grcs:
            for synapse in [rothmanMFToGrCAMPA, rothmanMFToGrCNMDA]:
                connection = nml.Connection(
                    id=ix,
                    pre_cell_id='../{}/{}/{}'.format(mossySpikersPopON.id,
                                                     mf_ix_ON,
                                                     spike_generator_on.id),
                    post_cell_id='../{}/{}/{}'.format(GrCPop.id, grc_ix,
                                                      iaF_GrC.id))
                ONprojectionAMPA.connections.append(connection)
                ONprojectionNMDA.connections.append(connection)
                ix = ix + 1

    # OFF MFs: locations and connectivity

    OFFprojectionAMPA = nml.Projection(
        id="OFFProjAMPA",
        presynaptic_population=mossySpikersPopOFF.id,
        postsynaptic_population=GrCPop.id,
        synapse=rothmanMFToGrCAMPA)
    OFFprojectionNMDA = nml.Projection(
        id="OFFProjNMDA",
        presynaptic_population=mossySpikersPopOFF.id,
        postsynaptic_population=GrCPop.id,
        synapse=rothmanMFToGrCNMDA)
    net.projections.append(OFFprojectionAMPA)
    net.projections.append(OFFprojectionNMDA)

    ix = 0
    for mf_ix_OFF in range(N_mf_OFF):
        mf_ix = mf_indices_OFF[mf_ix_OFF]
        inst = nml.Instance(id=mf_ix_OFF)
        mossySpikersPopOFF.instances.append(inst)
        inst.location = nml.Location(x=glom_pos[mf_ix, 0],
                                     y=glom_pos[mf_ix, 1],
                                     z=glom_pos[mf_ix, 2])
        # find which granule cells are neighbors
        innervated_grcs = np.where(conn_mat[mf_ix, :] == 1)[0]
        for grc_ix in innervated_grcs:
            for synapse in [rothmanMFToGrCAMPA, rothmanMFToGrCNMDA]:
                connection = nml.Connection(
                    id=ix,
                    pre_cell_id='../{}/{}/{}'.format(mossySpikersPopOFF.id,
                                                     mf_ix_OFF,
                                                     spike_generator_on.id),
                    post_cell_id='../{}/{}/{}'.format(GrCPop.id, grc_ix,
                                                      iaF_GrC.id))
                OFFprojectionAMPA.connections.append(connection)
                OFFprojectionNMDA.connections.append(connection)
                ix = ix + 1

    # Write network to file
    net_file_name = 'OSBnet.nml'
    pynml.write_neuroml2_file(net_doc, net_file_name)

    # Write LEMS instances to file
    lems_instances_file_name = 'instances.xml'
    pynml.write_lems_file(lems_instances_doc,
                          lems_instances_file_name,
                          validate=False)

    # Create a LEMSSimulation to manage creation of LEMS file
    ls = LEMSSimulation(
        'sim', duration, dt,
        simulation_seed=123)  # int(np.round(1000*random.random())))

    # Point to network as target of simulation
    ls.assign_simulation_target(net.id)

    # Include generated/existing NeuroML2 files
    ###ls.include_lems_file(spike_generator_file_name, include_included=False)
    ls.include_lems_file(lems_instances_file_name)
    ls.include_lems_file(ampa_syn_filename, include_included=False)
    ls.include_lems_file(nmda_syn_filename, include_included=False)
    ls.include_neuroml2_file(net_file_name)

    # Specify Displays and Output Files

    basedir = ''

    eof0 = 'Volts_file'
    ls.create_event_output_file(eof0, basedir + "MF_spikes.dat")

    for i in range(mossySpikersPopON.size):
        ls.add_selection_to_event_output_file(
            eof0, mf_indices_ON[i], '{}/{}/{}'.format(mossySpikersPopON.id, i,
                                                      spike_generator_on.id),
            'spike')

    for i in range(mossySpikersPopOFF.size):
        ls.add_selection_to_event_output_file(
            eof0, mf_indices_OFF[i],
            '{}/{}/{}'.format(mossySpikersPopOFF.id, i,
                              spike_generator_on.id), 'spike')

    eof1 = 'GrCspike_file'
    ls.create_event_output_file(eof1, basedir + "GrC_spikes.dat")

    for i in range(GrCPop.size):
        ls.add_selection_to_event_output_file(
            eof1, i, '{}/{}/{}'.format(GrCPop.id, i, iaF_GrC.id), 'spike')

    lems_file_name = ls.save_to_file()

    if run:
        print('Running the generated LEMS file: %s for simulation of %sms' %
              (lems_file_name, duration))
        results = pynml.run_lems_with_jneuroml(lems_file_name,
                                               max_memory="8G",
                                               nogui=True,
                                               load_saved_data=False,
                                               plot=False)

        return results
コード例 #16
0
def create_GoC_network( duration, dt, seed, runid, run=False):

	### ---------- Load Params
	noPar = True
	pfile = Path('params_file.pkl')
	if pfile.exists():
		print('Reading parameters from file:')
		file = open('params_file.pkl','rb')
		params_list = pkl.load(file)
		if len(params_list)>runid:
			p = params_list[runid]
			file.close()
	if noPar:
		p = inp.get_simulation_params( runid )
    
	### ---------- Component types
	goc_filename = 'GoC.cell.nml'							# Golgi cell with channels
	goc_file = pynml.read_neuroml2_file( goc_filename )
	goc_type = goc_file.cells[0]
	goc_ref = nml.IncludeType( href=goc_filename )

	MFSyn_filename = 'MF_GoC_Syn.nml'						# small conductance synapse for background inputs
	mfsyn_file = pynml.read_neuroml2_file( MFSyn_filename )
	MFSyn_type = mfsyn_file.exp_three_synapses[0]
	mfsyn_ref = nml.IncludeType( href=MFSyn_filename )
	
	MF20Syn_filename = 'MF_GoC_SynMult.nml'					# multi-syn conductance for strong/coincident transient input
	mf20syn_file = pynml.read_neuroml2_file( MF20Syn_filename )
	MF20Syn_type = mf20syn_file.exp_three_synapses[0]
	mf20syn_ref = nml.IncludeType( href=MF20Syn_filename )

	mf_type2 = 'spikeGeneratorPoisson'						# Spike source for background inputs
	mf_poisson = nml.SpikeGeneratorPoisson( id = "MF_Poisson", average_rate="5 Hz" )	# Not tuned to any data - qqq !
	
	mf_bursttype = 'transientPoissonFiringSynapse'			# Burst of MF input (as explicit input)
	mf_burst = nml.TransientPoissonFiringSynapse( id="MF_Burst", average_rate="100 Hz", delay="2000 ms", duration="500 ms", synapse=MF20Syn_type.id, spike_target='./{}'.format(MF20Syn_type.id) )

	gj = nml.GapJunction( id="GJ_0", conductance="426pS" )	# GoC synapse
	
	### --------- Populations

	# Build network to specify cells and connectivity
	net = nml.Network( id="gocNetwork", type="networkWithTemperature" , temperature="23 degC" )
		
	# Create GoC population
	goc_pop = nml.Population( id=goc_type.id+"Pop", component = goc_type.id, type="populationList", size=p["nGoC"] )
	for goc in range( p["nGoC"] ):
		inst = nml.Instance( id=goc )
		goc_pop.instances.append( inst )
		inst.location = nml.Location( x=p["GoC_pos"][goc,0], y=p["GoC_pos"][goc,1], z=p["GoC_pos"][goc,2] )
	net.populations.append( goc_pop )


	### MF population
	MF_Poisson_pop = nml.Population(id=mf_poisson.id+"_pop", component=mf_poisson.id, type="populationList", size=p["nMF"])
	for mf in range( p["nMF"] ):
		inst = nml.Instance(id=mf)
		MF_Poisson_pop.instances.append( inst )
		inst.location = nml.Location( x=p["MF_pos"][mf,0], y=p["MF_pos"][mf,1], z=p["MF_pos"][mf,2] )		
	net.populations.append( MF_Poisson_pop )
	
	# Create NML document for network specification
	net_doc = nml.NeuroMLDocument( id=net.id )
	net_doc.networks.append( net )
	net_doc.includes.append( goc_ref )
	net_doc.includes.append( mfsyn_ref )
	net_doc.includes.append( mf20syn_ref )
	net_doc.spike_generator_poissons.append( mf_poisson )	
	net_doc.transient_poisson_firing_synapses.append( mf_burst )
	net_doc.gap_junctions.append(gj)
	
	
	### ------------ Connectivity

	### 1. Background excitatory inputs: 	MF to GoC populations
	MFProjection = nml.Projection(id="MFtoGoC", presynaptic_population=MF_Poisson_pop.id, postsynaptic_population=goc_pop.id, synapse=MFSyn_type.id)
	net.projections.append(MFProjection)

	# MF_> GoC synapses (with syn_count equivalent to integer scaling of Mf synapse strength)
	nMFSyn = p["MF_GoC_pairs"].shape[1]
	ctr=0
	for syn in range( nMFSyn ):
		mf, goc = p["MF_GoC_pairs"][:, syn]
		for syn_count in range(p["MF_GoC_wt"][ctr]):
			conn2 = nml.Connection(id=ctr, pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, mf, mf_poisson.id), post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), post_segment_id='0', post_fraction_along="0.5")	#on soma
			MFProjection.connections.append(conn2)
			ctr+=1

	### 2. Perturbation as High Freq MF Inputs
	ctr=0
	for goc in p["Burst_GoC"]:
		for jj in range( p["nBurst"] ):				# Each Perturbed GoC gets nBurst random Burst sources
			inst = nml.ExplicitInput( id=ctr, target='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id), input=mf_burst.id, synapse=MF20Syn_type.id, spikeTarget='./{}'.format(MF20Syn_type.id))
			net.explicit_inputs.append( inst )
			ctr += 1

	### 3. Electrical coupling between GoCs
		
	GoCCoupling = nml.ElectricalProjection( id="gocGJ", presynaptic_population=goc_pop.id, postsynaptic_population=goc_pop.id )
	net.electrical_projections.append( GoCCoupling )
	dend_id = [1,2,5]
	for jj in range( p["GJ_pairs"].shape[0] ):
		conn = nml.ElectricalConnectionInstanceW( id=jj, pre_cell='../{}/{}/{}'.format(goc_pop.id, p["GJ_pairs"][jj,0], goc_type.id), pre_segment=dend_id[p["GJ_loc"][jj,0]], pre_fraction_along='0.5', post_cell='../{}/{}/{}'.format(goc_pop.id, p["GJ_pairs"][jj,1], goc_type.id), post_segment=dend_id[p["GJ_loc"][jj,1]], post_fraction_along='0.5', synapse=gj.id, weight=p["GJ_wt"][jj] )
		GoCCoupling.electrical_connection_instance_ws.append( conn )
		
		
	### --------------  Write files
		
	net_filename = 'gocNetwork.nml'
	pynml.write_neuroml2_file( net_doc, net_filename )

	simid = 'sim_gocnet_'+goc_type.id+'_run_{}'.format(runid)
	ls = LEMSSimulation( simid, duration=duration, dt=dt, simulation_seed=seed )
	ls.assign_simulation_target( net.id )
	ls.include_neuroml2_file( net_filename)
	ls.include_neuroml2_file( goc_filename)
	ls.include_neuroml2_file( MFSyn_filename)
	ls.include_neuroml2_file( MF20Syn_filename)
	
	
	# Specify outputs
	eof0 = 'Events_file'
	ls.create_event_output_file(eof0, "%s.v.spikes"%simid,format='ID_TIME')
	for jj in range( goc_pop.size):
		ls.add_selection_to_event_output_file( eof0, jj, '{}/{}/{}'.format( goc_pop.id, jj, goc_type.id), 'spike' )
		
	of0 = 'Volts_file'
	ls.create_output_file(of0, "%s.v.dat"%simid)
	for jj in range( goc_pop.size ):
		ls.add_column_to_output_file(of0, jj, '{}/{}/{}/v'.format( goc_pop.id, jj, goc_type.id))
		
	#Create Lems file to run
	lems_simfile = ls.save_to_file()

	if run:
		res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", nogui=True, plot=False)
	else:
		res = pynml.run_lems_with_jneuroml_neuron( lems_simfile, max_memory="2G", only_generate_scripts = True, compile_mods = False, nogui=True, plot=False)
	
	
	return res
コード例 #17
0
def create_GoC_network(duration, dt, seed, runid, run=False):

    ### ---------- Load Params
    noPar = True
    pfile = Path('params_file.pkl')
    if pfile.exists():
        print('Reading parameters from file:')
        file = open('params_file.pkl', 'rb')
        params_list = pkl.load(file)
        if len(params_list) > runid:
            p = params_list[runid]
            file.close()
    if noPar:
        p = inp.get_simulation_params(runid)

    ### ---------- Component types
    goc_filename = 'GoC.cell.nml'  # Golgi cell with channels
    goc_file = pynml.read_neuroml2_file(goc_filename)
    goc_type = goc_file.cells[0]
    goc_ref = nml.IncludeType(href=goc_filename)

    gj = nml.GapJunction(id="GJ_0", conductance="426pS")  # GoC synapse

    ### --------- Populations

    # Build network to specify cells and connectivity
    net = nml.Network(id="gocNetwork",
                      type="networkWithTemperature",
                      temperature="23 degC")

    # Create GoC population
    goc_pop = nml.Population(id=goc_type.id + "Pop",
                             component=goc_type.id,
                             type="populationList",
                             size=p["nGoC"])
    for goc in range(p["nGoC"]):
        inst = nml.Instance(id=goc)
        goc_pop.instances.append(inst)
        inst.location = nml.Location(x=p["GoC_pos"][goc, 0],
                                     y=p["GoC_pos"][goc, 1],
                                     z=p["GoC_pos"][goc, 2])
    net.populations.append(goc_pop)

    # Create NML document for network specification
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net_doc.includes.append(goc_ref)
    net_doc.gap_junctions.append(gj)

    ### ------------ Connectivity

    ### 1. Input Current to one cell
    ctr = 0
    for goc in p["Test_GoC"]:
        for jj in range(p["nSteps"]):
            input_id = 'stim_{}'.format(ctr)
            istep = nml.PulseGenerator(
                id=input_id,
                delay='{} ms'.format(p["iDuration"] * jj + p["iRest"] *
                                     (jj + 1)),
                duration='{} ms'.format(p["iDuration"]),
                amplitude='{} pA'.format(p["iAmp"][jj]))
            net_doc.pulse_generators.append(istep)

            input_list = nml.InputList(id='ilist_{}'.format(ctr),
                                       component=istep.id,
                                       populations=goc_pop.id)
            curr_inj = nml.Input('0',
                                 target="../%s[%i]" % (goc_pop.id, goc),
                                 destination="synapses")
            input_list.input.append(curr_inj)
            net.input_lists.append(input_list)
            ctr += 1

    ### 2. Electrical coupling between GoCs

    GoCCoupling = nml.ElectricalProjection(id="gocGJ",
                                           presynaptic_population=goc_pop.id,
                                           postsynaptic_population=goc_pop.id)
    net.electrical_projections.append(GoCCoupling)
    dend_id = [1, 2, 5]
    for jj in range(p["GJ_pairs"].shape[0]):
        conn = nml.ElectricalConnectionInstanceW(
            id=jj,
            pre_cell='../{}/{}/{}'.format(goc_pop.id, p["GJ_pairs"][jj, 0],
                                          goc_type.id),
            pre_segment=dend_id[p["GJ_loc"][jj, 0]],
            pre_fraction_along='0.5',
            post_cell='../{}/{}/{}'.format(goc_pop.id, p["GJ_pairs"][jj, 1],
                                           goc_type.id),
            post_segment=dend_id[p["GJ_loc"][jj, 1]],
            post_fraction_along='0.5',
            synapse=gj.id,
            weight=p["GJ_wt"][jj])
        GoCCoupling.electrical_connection_instance_ws.append(conn)

    ### --------------  Write files

    net_filename = 'gocNetwork.nml'
    pynml.write_neuroml2_file(net_doc, net_filename)

    simid = 'sim_gocnet_' + goc_type.id + '_run_{}'.format(runid)
    ls = LEMSSimulation(simid, duration=duration, dt=dt, simulation_seed=seed)
    ls.assign_simulation_target(net.id)
    ls.include_neuroml2_file(net_filename)
    ls.include_neuroml2_file(goc_filename)

    # Specify outputs
    eof0 = 'Events_file'
    ls.create_event_output_file(eof0, "%s.v.spikes" % simid, format='ID_TIME')
    for jj in range(goc_pop.size):
        ls.add_selection_to_event_output_file(
            eof0, jj, '{}/{}/{}'.format(goc_pop.id, jj, goc_type.id), 'spike')

    of0 = 'Volts_file'
    ls.create_output_file(of0, "%s.v.dat" % simid)
    ctr = 0
    for jj in p["Test_GoC"]:
        ls.add_column_to_output_file(
            of0, jj, '{}/{}/{}/v'.format(goc_pop.id, ctr, goc_type.id))
        ctr += 1

    #Create Lems file to run
    lems_simfile = ls.save_to_file()

    if run:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  nogui=True,
                                                  plot=False)
    else:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  only_generate_scripts=True,
                                                  compile_mods=False,
                                                  nogui=True,
                                                  plot=False)

    return res
コード例 #18
0
def create_GoC_network(duration=2000,
                       dt=0.025,
                       seed=123,
                       runid=0,
                       run=False,
                       minI=-75,
                       maxI=200,
                       iStep=25,
                       iDur=400,
                       iRest=500):

    file = open('useParams_SpontFreq_7_pm_2.pkl', 'rb')
    use_params = pkl.load(file)["useParams"]
    file.close()

    runid = use_params[0][runid]
    print('Using parameter set = ', runid)
    ### ---------- Component types
    gocID = 'GoC_' + format(runid, '05d')
    goc_filename = '{}.cell.nml'.format(gocID)
    goc_type = pynml.read_neuroml2_file(goc_filename).cells[0]

    ### --------- Populations

    # Build network to specify cells and connectivity
    net = nml.Network(id='GoCNet_' + format(runid, '05d'),
                      type="networkWithTemperature",
                      temperature="23 degC")

    # Create GoC population
    goc_pop = nml.Population(id=goc_type.id + "Pop",
                             component=goc_type.id,
                             type="populationList",
                             size=1)
    inst = nml.Instance(id=0)
    goc_pop.instances.append(inst)
    inst.location = nml.Location(x=0, y=0, z=0)
    net.populations.append(goc_pop)

    # Create NML document for network specification
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net_doc.includes.append(nml.IncludeType(href=goc_filename))

    # Add Current Injection
    ctr = 0
    goc = 0
    p = {
        "iAmp": np.arange(minI, maxI + iStep / 2, iStep),
        "iDuration": iDur,
        "iRest": iRest
    }
    p["nSteps"] = p["iAmp"].shape[0]

    for jj in range(p["nSteps"]):
        input_id = 'stim_{}'.format(ctr)
        istep = nml.PulseGenerator(id=input_id,
                                   delay='{} ms'.format(p["iDuration"] * jj +
                                                        p["iRest"] * (jj + 1)),
                                   duration='{} ms'.format(p["iDuration"]),
                                   amplitude='{} pA'.format(p["iAmp"][jj]))
        net_doc.pulse_generators.append(istep)

        input_list = nml.InputList(id='ilist_{}'.format(ctr),
                                   component=istep.id,
                                   populations=goc_pop.id)
        curr_inj = nml.Input('0',
                             target="../%s[%i]" % (goc_pop.id, goc),
                             destination="synapses")
        input_list.input.append(curr_inj)
        net.input_lists.append(input_list)
        ctr += 1

    ### --------------  Write files

    net_filename = 'GoCNet_istep_' + format(runid, '05d') + '.nml'
    pynml.write_neuroml2_file(net_doc, net_filename)

    simid = 'sim_gocnet_istep_' + goc_type.id
    ls = LEMSSimulation(simid, duration=duration, dt=dt, simulation_seed=seed)
    ls.assign_simulation_target(net.id)
    ls.include_neuroml2_file(net_filename)
    ls.include_neuroml2_file(goc_filename)

    # Specify outputs
    eof0 = 'Events_file'
    ls.create_event_output_file(eof0, "%s.v.spikes" % simid, format='ID_TIME')
    for jj in range(goc_pop.size):
        ls.add_selection_to_event_output_file(
            eof0, jj, '{}/{}/{}'.format(goc_pop.id, jj, goc_type.id), 'spike')

    of0 = 'Volts_file'
    ls.create_output_file(of0, "%s.v.dat" % simid)
    for jj in range(goc_pop.size):
        ls.add_column_to_output_file(
            of0, jj, '{}/{}/{}/v'.format(goc_pop.id, jj, goc_type.id))

    #Create Lems file to run
    lems_simfile = ls.save_to_file()

    if run:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  nogui=True,
                                                  plot=False)
    else:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  only_generate_scripts=True,
                                                  compile_mods=False,
                                                  nogui=True,
                                                  plot=False)

    return res
コード例 #19
0
                                   pref_duration_ms,
                                   pref_dt_ms, # used in Allen Neuron runs
                                   "LEMS_%s.xml"%model_id,
                                   nml2_cell_dir,
                                   copy_neuroml = False,
                                   lems_file_generate_seed=1234)
    
    
    net_doc.includes.append(neuroml.IncludeType(nml_cell_file))

    pop = neuroml.Population(id="Pop_%s"%model_id, component=cell.id, type="populationList")

    net.populations.append(pop)

    inst = neuroml.Instance(id="0")
    pop.instances.append(inst)

    width = 7
    X = count%width
    Z = (count -X) / width
    inst.location = neuroml.Location(x=300*X, y=0, z=300*Z)

    count+=1
    

net_file = '%s/%s.net.nml'%(nml2_cell_dir,net_ref)
neuroml.writers.NeuroMLWriter.write(net_doc, net_file)

print("Written network with %i cells in network to: %s"%(count,net_file))

pynml.nml2_to_svg(net_file)
コード例 #20
0
def create_GoC_network(duration=2000, dt=0.025, seed=123, runid=0, run=False):

    keepFile = open('useParams_FI_14_25.pkl', 'rb')
    runid = pkl.load(keepFile)[runid]
    keepFile.close()

    ### ---------- Component types
    gocID = 'Golgi_040408_C1_' + format(runid, '05d')
    goc_filename = '{}.cell.nml'.format(gocID)
    goc_type = pynml.read_neuroml2_file(goc_filename).cells[0]

    ### --------- Populations

    # Build network to specify cells and connectivity
    net = nml.Network(id='MorphoNet_' + format(runid, '05d'),
                      type="networkWithTemperature",
                      temperature="23 degC")

    # Create GoC population
    goc_pop = nml.Population(id=goc_type.id + "Pop",
                             component=goc_type.id,
                             type="populationList",
                             size=1)
    inst = nml.Instance(id=0)
    goc_pop.instances.append(inst)
    inst.location = nml.Location(x=0, y=0, z=0)
    net.populations.append(goc_pop)

    # Create NML document for network specification
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net_doc.includes.append(nml.IncludeType(href=goc_filename))

    ### --------------  Write files

    net_filename = 'Morpho1_' + format(runid, '05d') + '.nml'
    pynml.write_neuroml2_file(net_doc, net_filename)

    simid = 'sim_morpho1_' + goc_type.id
    ls = LEMSSimulation(simid, duration=duration, dt=dt, simulation_seed=seed)
    ls.assign_simulation_target(net.id)
    ls.include_neuroml2_file(net_filename)
    ls.include_neuroml2_file(goc_filename)

    # Specify outputs
    eof0 = 'Events_file'
    ls.create_event_output_file(eof0, "%s.v.spikes" % simid, format='ID_TIME')
    for jj in range(goc_pop.size):
        ls.add_selection_to_event_output_file(
            eof0, jj, '{}/{}/{}'.format(goc_pop.id, jj, goc_type.id), 'spike')

    of0 = 'Volts_file'
    ls.create_output_file(of0, "%s.v.dat" % simid)
    for jj in range(goc_pop.size):
        ls.add_column_to_output_file(
            of0, jj, '{}/{}/{}/v'.format(goc_pop.id, jj, goc_type.id))

    #Create Lems file to run
    lems_simfile = ls.save_to_file()

    if run:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  nogui=True,
                                                  plot=False)
    else:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  only_generate_scripts=True,
                                                  compile_mods=False,
                                                  nogui=True,
                                                  plot=False)

    return res
コード例 #21
0
def create_populations(net, cell_types, nrn_runname, randomSeed):
    '''
    Reads original data files (mainly position.dat) and creates population of cells
    :param net: neuroml.Network() - to which the populations will be added 
    :param cell_types: list - (just to avoid multiple declaration of cell_types)
    :param nrn_runname: string - name of the directory where the saved data files are stored (celltype.dat, position.dat)
    :param randoSeed: int - seed for random color generation
    :return dCellIDs: dictionary - key: cellID, value: [cell_type, ID in pop_cell_type] (for creating synapses)
    :return dNumCells: dictonary with the number of cells in a given population (for creating output files -> just for "real cells")
    '''

    # read in cell gids:
    fCellIDs = "../../results/%s/celltype.dat" % nrn_runname
    dCellIDs = {}

    with open(fCellIDs) as file:
        next(
            file
        )  # skip header: "celltype, techtype, typeIndex, rangeStart, rangeEnd"
        for line in file:
            if line.split()[0] not in ["ca3cell", "eccell"]:
                cell_type = line.split()[1][:-4]
            else:
                cell_type = line.split()[0][:-4]
            rangeStart = int(line.split()[3])
            rangeEnd = int(line.split()[4])

            if rangeStart == rangeEnd:
                dCellIDs[rangeStart] = [cell_type, 0]
            elif rangeStart < rangeEnd:
                for ind, i in enumerate(range(rangeStart, rangeEnd + 1)):
                    dCellIDs[i] = [cell_type, ind]
            else:
                raise AssertionError(
                    "rangeEnd:%g is lower than rangeStart:%g!" %
                    (rangeEnd, rangeStart))

    file.close()

    # read in cell positions
    fPositions = "../../results/%s/position.dat" % nrn_runname
    dCellPops = {}

    with open(fPositions) as file:
        next(file)  # skip header: "cell, x, y, z, host"
        for line in file:
            cellID = int(line.split()[0])
            if cellID in dCellIDs:
                cell_type = dCellIDs[cellID][0]

            pos = [
                float(line.split()[1]),
                float(line.split()[2]),
                float(line.split()[3])
            ]
            if cell_type not in dCellPops:
                dCellPops[cell_type] = []
                dCellPops[cell_type].append(pos)
            else:
                dCellPops[cell_type].append(pos)

    file.close()

    ##### add populations to nml file #####

    dNumCells = {
    }  # for creating displays and output files (see later in the code)

    j = 0  # for increasing random seed in random colour generation
    for cell_type, pop_list in dCellPops.iteritems():

        if cell_type in cell_types:
            dNumCells[cell_type] = 0
            component = "%scell" % cell_type
        else:
            component = "spikeGenPoisson"
        # TODO: implement other stimulations ...

        popID = "pop_%s" % cell_type
        pop = neuroml.Population(id=popID,
                                 component=component,
                                 type="populationList",
                                 size=len(pop_list))
        pop.properties.append(
            neuroml.Property("color", helper_getnextcolor(randomSeed + j)))
        net.populations.append(pop)
        j += 1

        for i, sublist in enumerate(pop_list):
            x_pos = sublist[0]
            y_pos = sublist[1]
            z_pos = sublist[2]
            inst = neuroml.Instance(id=i)
            pop.instances.append(inst)
            inst.location = neuroml.Location(x=x_pos, y=y_pos, z=z_pos)

            if cell_type in cell_types:
                dNumCells[cell_type] += 1

    return dCellIDs, dNumCells
コード例 #22
0
def create_GoC_network(duration,
                       dt,
                       seed,
                       N_goc=0,
                       N_mf=15,
                       run=False,
                       prob_type='Boltzmann',
                       GJw_type='Vervaeke2010'):

    ### ---------- Component types
    goc_filename = 'GoC.cell.nml'  # Golgi cell with channels
    goc_file = pynml.read_neuroml2_file(goc_filename)
    goc_type = goc_file.cells[0]
    goc_ref = nml.IncludeType(href=goc_filename)

    MFSyn_filename = 'MF_GoC_Syn.nml'  # small conductance synapse for background inputs
    mfsyn_file = pynml.read_neuroml2_file(MFSyn_filename)
    MFSyn_type = mfsyn_file.exp_three_synapses[0]
    mfsyn_ref = nml.IncludeType(href=MFSyn_filename)

    MF20Syn_filename = 'MF_GoC_SynMult.nml'  # multi-syn conductance for strong/coincident transient input
    mf20syn_file = pynml.read_neuroml2_file(MF20Syn_filename)
    MF20Syn_type = mf20syn_file.exp_three_synapses[0]
    mf20syn_ref = nml.IncludeType(href=MF20Syn_filename)

    mf_type2 = 'spikeGeneratorPoisson'  # Spike source for background inputs
    mf_poisson = nml.SpikeGeneratorPoisson(
        id="MF_Poisson", average_rate="5 Hz")  # Not tuned to any data - qqq !

    mf_bursttype = 'transientPoissonFiringSynapse'  # Burst of MF input (as explicit input)
    mf_burst = nml.TransientPoissonFiringSynapse(id="MF_Burst",
                                                 average_rate="100 Hz",
                                                 delay="2000 ms",
                                                 duration="500 ms",
                                                 synapse=MF20Syn_type.id,
                                                 spike_target='./{}'.format(
                                                     MF20Syn_type.id))

    gj = nml.GapJunction(id="GJ_0", conductance="426pS")  # GoC synapse

    ### --------- Populations

    # Build network to specify cells and connectivity
    net = nml.Network(id="gocNetwork",
                      type="networkWithTemperature",
                      temperature="23 degC")

    ### Golgi cells
    if N_goc > 0:
        GoC_pos = nu.GoC_locate(N_goc)
    else:
        GoC_pos = nu.GoC_density_locate()
        N_goc = GoC_pos.shape[0]

    # Create GoC population
    goc_pop = nml.Population(id=goc_type.id + "Pop",
                             component=goc_type.id,
                             type="populationList",
                             size=N_goc)
    for goc in range(N_goc):
        inst = nml.Instance(id=goc)
        goc_pop.instances.append(inst)
        inst.location = nml.Location(x=GoC_pos[goc, 0],
                                     y=GoC_pos[goc, 1],
                                     z=GoC_pos[goc, 2])
    net.populations.append(goc_pop)

    ### MF population
    MF_Poisson_pop = nml.Population(id=mf_poisson.id + "_pop",
                                    component=mf_poisson.id,
                                    type="populationList",
                                    size=N_mf)
    MF_pos = nu.GoC_locate(N_mf)
    for mf in range(N_mf):
        inst = nml.Instance(id=mf)
        MF_Poisson_pop.instances.append(inst)
        inst.location = nml.Location(x=MF_pos[mf, 0],
                                     y=MF_pos[mf, 1],
                                     z=MF_pos[mf, 2])
    net.populations.append(MF_Poisson_pop)

    # Create NML document for network specification
    net_doc = nml.NeuroMLDocument(id=net.id)
    net_doc.networks.append(net)
    net_doc.includes.append(goc_ref)
    net_doc.includes.append(mfsyn_ref)
    net_doc.includes.append(mf20syn_ref)
    net_doc.spike_generator_poissons.append(mf_poisson)
    net_doc.transient_poisson_firing_synapses.append(mf_burst)
    net_doc.gap_junctions.append(gj)

    ### ------------ Connectivity

    ### background excitatory inputs: 	MF to GoC populations
    MFProjection = nml.Projection(id="MFtoGoC",
                                  presynaptic_population=MF_Poisson_pop.id,
                                  postsynaptic_population=goc_pop.id,
                                  synapse=MFSyn_type.id)
    net.projections.append(MFProjection)

    #Get list of MF->GoC synapse
    mf_synlist = nu.randdist_MF_syn(N_mf, N_goc,
                                    pConn=0.3)  # Not tuned to any data - qqq!
    nMFSyn = mf_synlist.shape[1]
    for syn in range(nMFSyn):
        mf, goc = mf_synlist[:, syn]
        conn2 = nml.Connection(
            id=syn,
            pre_cell_id='../{}/{}/{}'.format(MF_Poisson_pop.id, mf,
                                             mf_poisson.id),
            post_cell_id='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id),
            post_segment_id='0',
            post_fraction_along="0.5")  #on soma
        MFProjection.connections.append(conn2)

    ### Add few burst inputs
    n_bursts = 4
    gocPerm = np.random.permutation(
        N_goc)  # change to central neurons later -qqq !!!
    ctr = 0
    for gg in range(4):
        goc = gocPerm[gg]
        for jj in range(n_bursts):
            inst = nml.ExplicitInput(
                id=ctr,
                target='../{}/{}/{}'.format(goc_pop.id, goc, goc_type.id),
                input=mf_burst.id,
                synapse=MF20Syn_type.id,
                spikeTarget='./{}'.format(MF20Syn_type.id))
            net.explicit_inputs.append(inst)
            ctr += 1

    ### Electrical coupling between GoCs

    # get GJ connectivity
    GJ_pairs, GJWt = nu.GJ_conn(GoC_pos, prob_type, GJw_type)
    #tmp1, tmp2 = valnet.gapJuncAnalysis( GJ_pairs, GJWt )
    #print("Number of gap junctions per cell: ", tmp1)
    #print("Net GJ conductance per cell:", tmp2)

    # Add electrical synapses
    GoCCoupling = nml.ElectricalProjection(id="gocGJ",
                                           presynaptic_population=goc_pop.id,
                                           postsynaptic_population=goc_pop.id)
    nGJ = GJ_pairs.shape[0]
    for jj in range(nGJ):
        conn = nml.ElectricalConnectionInstanceW(
            id=jj,
            pre_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj, 0],
                                          goc_type.id),
            pre_segment='1',
            pre_fraction_along='0.5',
            post_cell='../{}/{}/{}'.format(goc_pop.id, GJ_pairs[jj, 1],
                                           goc_type.id),
            post_segment='1',
            post_fraction_along='0.5',
            synapse=gj.id,
            weight=GJWt[jj])
        GoCCoupling.electrical_connection_instance_ws.append(conn)
    net.electrical_projections.append(GoCCoupling)

    ### --------------  Write files

    net_filename = 'gocNetwork.nml'
    pynml.write_neuroml2_file(net_doc, net_filename)
    #lems_filename = 'instances.xml'
    #pynml.write_lems_file( lems_inst_doc, lems_filename, validate=False )

    simid = 'sim_gocnet' + goc_type.id
    ls = LEMSSimulation(simid, duration=duration, dt=dt, simulation_seed=seed)
    ls.assign_simulation_target(net.id)

    ls.include_neuroml2_file(net_filename)
    ls.include_neuroml2_file(goc_filename)
    ls.include_neuroml2_file(MFSyn_filename)
    ls.include_neuroml2_file(MF20Syn_filename)
    #ls.include_lems_file( lems_filename, include_included=False)

    # Specify outputs
    eof0 = 'Events_file'
    ls.create_event_output_file(eof0, "%s.v.spikes" % simid, format='ID_TIME')
    for jj in range(goc_pop.size):
        ls.add_selection_to_event_output_file(
            eof0, jj, '{}/{}/{}'.format(goc_pop.id, jj, goc_type.id), 'spike')

    of0 = 'Volts_file'
    ls.create_output_file(of0, "%s.v.dat" % simid)
    for jj in range(goc_pop.size):
        ls.add_column_to_output_file(
            of0, jj, '{}/{}/{}/v'.format(goc_pop.id, jj, goc_type.id))

    #Create Lems file to run
    lems_simfile = ls.save_to_file()

    if run:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  nogui=True,
                                                  plot=False)
    else:
        res = pynml.run_lems_with_jneuroml_neuron(lems_simfile,
                                                  max_memory="2G",
                                                  only_generate_scripts=True,
                                                  compile_mods=False,
                                                  nogui=True,
                                                  plot=False)

    return res
コード例 #23
0
net_ref = "BC_StimNet"
net_doc = neuroml.NeuroMLDocument(id=net_ref)

net = neuroml.Network(id=net_ref)
net_doc.networks.append(net)

cell_id = 'BC2_na_k'

net_doc.includes.append(neuroml.IncludeType(cell_id + '.cell.nml'))

pop = neuroml.Population(id="BC", component=cell_id, type="populationList")

inst = neuroml.Instance(id="0")
pop.instances.append(inst)
inst.location = neuroml.Location(x=0, y=0, z=0)
net.populations.append(pop)

stim = neuroml.PulseGenerator(id='stim0',
                              delay='50ms',
                              duration='200ms',
                              amplitude='0.5nA')

net_doc.pulse_generators.append(stim)

input_list = neuroml.InputList(id="%s_input" % stim.id,
                               component=stim.id,
                               populations=pop.id)

syn_input = neuroml.Input(id=0,
                          target="../%s/0/%s" % (pop.id, pop.component),
コード例 #24
0
def generate_WB_network(cell_id,
                        synapse_id,
                        numCells_bc,
                        connection_probability,
                        I_mean,
                        I_sigma,
                        generate_LEMS_simulation,
                        duration,
                        x_size=100,
                        y_size=100,
                        z_size=100,
                        network_id=ref + 'Network',
                        color='0 0 1',
                        connection=True,
                        temperature='37 degC',
                        validate=True,
                        dt=0.01):

    nml_doc = neuroml.NeuroMLDocument(id=network_id)
    nml_doc.includes.append(neuroml.IncludeType(href='WangBuzsaki.cell.nml'))
    nml_doc.includes.append(neuroml.IncludeType(href='WangBuzsakiSynapse.xml'))

    # Create network
    net = neuroml.Network(id=network_id,
                          type='networkWithTemperature',
                          temperature=temperature)
    net.notes = 'Network generated using libNeuroML v%s' % __version__
    nml_doc.networks.append(net)

    # Create population
    pop = neuroml.Population(id=ref + 'pop',
                             component=cell_id,
                             type='populationList',
                             size=numCells_bc)
    if color is not None:
        pop.properties.append(neuroml.Property('color', color))
    net.populations.append(pop)

    for i in range(0, numCells_bc):
        inst = neuroml.Instance(id=i)
        pop.instances.append(inst)
        inst.location = neuroml.Location(x=str(x_size * rnd.random()),
                                         y=str(y_size * rnd.random()),
                                         z=str(z_size * rnd.random()))

    # Add connections
    proj = neuroml.ContinuousProjection(id=ref + 'proj',
                                        presynaptic_population=pop.id,
                                        postsynaptic_population=pop.id)

    conn_count = 0
    for i in range(0, numCells_bc):
        for j in range(0, numCells_bc):
            if i != j and rnd.random() < connection_probability:
                connection = neuroml.ContinuousConnectionInstance(
                    id=conn_count,
                    pre_cell='../%s/%i/%s' % (pop.id, i, cell_id),
                    pre_component='silent',
                    post_cell='../%s/%i/%s' % (pop.id, j, cell_id),
                    post_component=synapse_id)
                proj.continuous_connection_instances.append(connection)
                conn_count += 1

    net.continuous_projections.append(proj)

    # make cell pop inhomogenouos (different V_init-s with voltage-clamp)
    vc_dur = 2  # ms
    for i in range(0, numCells_bc):
        tmp = -75 + (rnd.random() * 15)
        vc = neuroml.VoltageClamp(id='VClamp%i' % i,
                                  delay='0ms',
                                  duration='%ims' % vc_dur,
                                  simple_series_resistance='1e6ohm',
                                  target_voltage='%imV' % tmp)

        nml_doc.voltage_clamps.append(vc)

        input_list = neuroml.InputList(id='input_%i' % i,
                                       component='VClamp%i' % i,
                                       populations=pop.id)
        input = neuroml.Input(id=i,
                              target='../%s/%i/%s' % (pop.id, i, cell_id),
                              destination='synapses')
        input_list.input.append(input)

        net.input_lists.append(input_list)

    # Add outer input (IClamp)
    tmp = rnd.normal(I_mean, I_sigma**2,
                     numCells_bc)  # random numbers from Gaussian distribution
    for i in range(0, numCells_bc):
        pg = neuroml.PulseGenerator(id='IClamp%i' % i,
                                    delay='%ims' % vc_dur,
                                    duration='%ims' % (duration - vc_dur),
                                    amplitude='%fpA' % (tmp[i]))

        nml_doc.pulse_generators.append(pg)

        input_list = neuroml.InputList(id='input%i' % i,
                                       component='IClamp%i' % i,
                                       populations=pop.id)
        input = neuroml.Input(id=i,
                              target='../%s/%i/%s' % (pop.id, i, cell_id),
                              destination='synapses')
        input_list.input.append(input)

        net.input_lists.append(input_list)

    # Write to file
    nml_file = '%s100Cells.net.nml' % ref
    print 'Writing network file to:', nml_file, '...'
    neuroml.writers.NeuroMLWriter.write(nml_doc, nml_file)

    if validate:

        # Validate the NeuroML
        from neuroml.utils import validate_neuroml2
        validate_neuroml2(nml_file)

    if generate_LEMS_simulation:

        # Vreate a LEMSSimulation to manage creation of LEMS file
        ls = LEMSSimulation(sim_id='%sNetSim' % ref, duration=duration, dt=dt)

        # Point to network as target of simulation
        ls.assign_simulation_target(net.id)

        # Incude generated/existing NeuroML2 files
        ls.include_neuroml2_file('WangBuzsaki.cell.nml',
                                 include_included=False)
        ls.include_neuroml2_file('WangBuzsakiSynapse.xml',
                                 include_included=False)
        ls.include_neuroml2_file(nml_file, include_included=False)

        # Specify Display and output files
        disp_bc = 'display_bc'
        ls.create_display(disp_bc, 'Basket Cell Voltage trace', '-80', '40')

        of_bc = 'volts_file_bc'
        ls.create_output_file(of_bc, 'wangbuzsaki_network.dat')

        of_spikes_bc = 'spikes_bc'
        ls.create_event_output_file(of_spikes_bc,
                                    'wangbuzsaki_network_spikes.dat')

        max_traces = 9  # the 10th color in NEURON is white ...
        for i in range(numCells_bc):
            quantity = '%s/%i/%s/v' % (pop.id, i, cell_id)
            if i < max_traces:
                ls.add_line_to_display(disp_bc, 'BC %i: Vm' % i, quantity,
                                       '1mV', pynml.get_next_hex_color())
            ls.add_column_to_output_file(of_bc, 'v_%i' % i, quantity)
            ls.add_selection_to_event_output_file(of_spikes_bc,
                                                  i,
                                                  select='%s/%i/%s' %
                                                  (pop.id, i, cell_id),
                                                  event_port='spike')

        # Save to LEMS file
        print 'Writing LEMS file...'
        lems_file_name = ls.save_to_file()

    else:

        ls = None
        lems_file_name = ''

    return ls, lems_file_name