コード例 #1
0
    def create_neuron_to_muscle_syn(self):
        self.neuron_to_muscle_exc_syn = GradedSynapse(
            id="neuron_to_muscle_exc_syn",
            conductance=self.get_bioparameter(
                "neuron_to_muscle_exc_syn_conductance").value,
            delta=self.get_bioparameter(
                "neuron_to_muscle_exc_syn_delta").value,
            Vth=self.get_bioparameter("neuron_to_muscle_exc_syn_vth").value,
            erev=self.get_bioparameter("neuron_to_muscle_exc_syn_erev").value,
            k=self.get_bioparameter("neuron_to_muscle_exc_syn_k").value)

        self.neuron_to_muscle_inh_syn = GradedSynapse(
            id="neuron_to_muscle_inh_syn",
            conductance=self.get_bioparameter(
                "neuron_to_muscle_inh_syn_conductance").value,
            delta=self.get_bioparameter(
                "neuron_to_muscle_inh_syn_delta").value,
            Vth=self.get_bioparameter("neuron_to_muscle_inh_syn_vth").value,
            erev=self.get_bioparameter("neuron_to_muscle_inh_syn_erev").value,
            k=self.get_bioparameter("neuron_to_muscle_inh_syn_k").value)

        self.neuron_to_muscle_elec_syn = GapJunction(
            id="neuron_to_muscle_elec_syn",
            conductance=self.get_bioparameter(
                "neuron_to_muscle_elec_syn_gbase").value)
コード例 #2
0
    def create_models(self):

        self.generic_cell = IafActivityCell(
            id="generic_iaf_cell",
            C=self.get_bioparameter("iaf_C").value,
            thresh=self.get_bioparameter("iaf_thresh").value,
            reset=self.get_bioparameter("iaf_reset").value,
            leak_conductance=self.get_bioparameter("iaf_conductance").value,
            leak_reversal=self.get_bioparameter("iaf_leak_reversal").value,
            tau1=self.get_bioparameter("iaf_tau1").value)

        self.exc_syn = GradedSynapse(
            id="exc_syn",
            conductance=self.get_bioparameter("exc_syn_conductance").value,
            delta=self.get_bioparameter("exc_syn_delta").value,
            Vth=self.get_bioparameter("exc_syn_vth").value,
            erev=self.get_bioparameter("exc_syn_erev").value,
            k=self.get_bioparameter("exc_syn_k").value)

        self.inh_syn = GradedSynapse(
            id="inh_syn",
            conductance=self.get_bioparameter("inh_syn_conductance").value,
            delta=self.get_bioparameter("inh_syn_delta").value,
            Vth=self.get_bioparameter("inh_syn_vth").value,
            erev=self.get_bioparameter("inh_syn_erev").value,
            k=self.get_bioparameter("inh_syn_k").value)

        self.elec_syn = GapJunction(
            id="elec_syn",
            conductance=self.get_bioparameter("elec_syn_gbase").value)

        self.offset_current = PulseGenerator(
            id="offset_current",
            delay=self.get_bioparameter(
                "unphysiological_offset_current_del").value,
            duration=self.get_bioparameter(
                "unphysiological_offset_current_dur").value,
            amplitude=self.get_bioparameter(
                "unphysiological_offset_current").value)
コード例 #3
0
    def get_inh_syn(self, pre_cell, post_cell, type):
        self.found_specific_param = False

        specific_param_template = '%s_to_%s_inh_syn_%s'
        if type == 'neuron_to_neuron':
            conductance = self.get_conn_param(pre_cell, post_cell,
                                              specific_param_template,
                                              'neuron_to_neuron_inh_syn_%s',
                                              'conductance')
            erev = self.get_conn_param(pre_cell, post_cell,
                                       specific_param_template, 'inh_syn_%s',
                                       'erev')
            delta = self.get_conn_param(pre_cell, post_cell,
                                        specific_param_template, 'inh_syn_%s',
                                        'delta')
            vth = self.get_conn_param(pre_cell, post_cell,
                                      specific_param_template, 'inh_syn_%s',
                                      'vth')
            k = self.get_conn_param(pre_cell, post_cell,
                                    specific_param_template, 'inh_syn_%s', 'k')

            conn_id = 'neuron_to_neuron_inh_syn'

        elif type == 'neuron_to_muscle':
            conductance = self.get_conn_param(pre_cell, post_cell,
                                              specific_param_template,
                                              'neuron_to_muscle_inh_syn_%s',
                                              'conductance')
            erev = self.get_conn_param(pre_cell, post_cell,
                                       specific_param_template, 'inh_syn_%s',
                                       'erev')
            delta = self.get_conn_param(pre_cell, post_cell,
                                        specific_param_template, 'inh_syn_%s',
                                        'delta')
            vth = self.get_conn_param(pre_cell, post_cell,
                                      specific_param_template, 'inh_syn_%s',
                                      'vth')
            k = self.get_conn_param(pre_cell, post_cell,
                                    specific_param_template, 'inh_syn_%s', 'k')

            conn_id = 'neuron_to_muscle_inh_syn'

        if self.found_specific_param:
            conn_id = '%s_to_%s_inh_syn' % (pre_cell, post_cell)

        return GradedSynapse(id=conn_id,
                             conductance=conductance,
                             delta=delta,
                             Vth=vth,
                             erev=erev,
                             k=k)
コード例 #4
0
def create_n_connection_synapse(prototype_syn, n, nml_doc, existing_synapses):

    new_id = "%s_%sconns" % (prototype_syn.id, str(n).replace('.', '_'))

    if isinstance(prototype_syn, ExpTwoSynapse):
        new_id = "%s" % (prototype_syn.id)

    if not existing_synapses.has_key(new_id):

        if isinstance(prototype_syn, ExpTwoSynapse):

            new_syn = ExpTwoSynapse(id=new_id,
                                    gbase=prototype_syn.gbase,
                                    erev=prototype_syn.erev,
                                    tau_decay=prototype_syn.tau_decay,
                                    tau_rise=prototype_syn.tau_rise)

            existing_synapses[new_id] = new_syn
            nml_doc.exp_two_synapses.append(new_syn)

        elif isinstance(prototype_syn, GapJunction):
            magnitude, unit = bioparameters.split_neuroml_quantity(
                prototype_syn.conductance)
            new_syn = GapJunction(id=new_id,
                                  conductance="%s%s" % (magnitude * n, unit))

            existing_synapses[new_id] = new_syn
            nml_doc.gap_junctions.append(new_syn)

        elif isinstance(prototype_syn, GradedSynapse):
            magnitude, unit = bioparameters.split_neuroml_quantity(
                prototype_syn.conductance)
            new_syn = GradedSynapse(id=new_id,
                                    conductance="%s%s" % (magnitude * n, unit),
                                    delta=prototype_syn.delta,
                                    Vth=prototype_syn.Vth,
                                    erev=prototype_syn.erev,
                                    k=prototype_syn.k)

            existing_synapses[new_id] = new_syn
            nml_doc.graded_synapses.append(new_syn)

    else:
        new_syn = existing_synapses[new_id]

    return new_syn
コード例 #5
0
    def create_models(self):

        self.generic_cell = Cell(id = "GenericCell")

        morphology = Morphology()
        morphology.id = "morphology_"+self.generic_cell.id

        self.generic_cell.morphology = morphology

        prox_point = Point3DWithDiam(x="0", y="0", z="0", diameter=self.get_bioparameter("cell_diameter").value)
        dist_point = Point3DWithDiam(x="0", y="0", z=self.get_bioparameter("cell_length").value, diameter=self.get_bioparameter("cell_diameter").value)

        segment = Segment(id="0",
                          name="soma",
                          proximal = prox_point, 
                          distal = dist_point)

        morphology.segments.append(segment)

        self.generic_cell.biophysical_properties = BiophysicalProperties(id="biophys_"+self.generic_cell.id)

        mp = MembraneProperties()
        self.generic_cell.biophysical_properties.membrane_properties = mp

        mp.init_memb_potentials.append(InitMembPotential(value=self.get_bioparameter("initial_memb_pot").value))

        mp.specific_capacitances.append(SpecificCapacitance(value=self.get_bioparameter("specific_capacitance").value))

        mp.spike_threshes.append(SpikeThresh(value=self.get_bioparameter("spike_thresh").value))

        mp.channel_densities.append(ChannelDensity(cond_density=self.get_bioparameter("leak_cond_density").value, 
                                                   id="Leak_all", 
                                                   ion_channel="Leak", 
                                                   erev=self.get_bioparameter("leak_erev").value,
                                                   ion="non_specific"))

        mp.channel_densities.append(ChannelDensity(cond_density=self.get_bioparameter("k_slow_cond_density").value, 
                                                   id="k_slow_all", 
                                                   ion_channel="k_slow", 
                                                   erev=self.get_bioparameter("k_slow_erev").value,
                                                   ion="k"))

        mp.channel_densities.append(ChannelDensity(cond_density=self.get_bioparameter("k_fast_cond_density").value, 
                                                   id="k_fast_all", 
                                                   ion_channel="k_fast", 
                                                   erev=self.get_bioparameter("k_fast_erev").value,
                                                   ion="k"))

        mp.channel_densities.append(ChannelDensity(cond_density=self.get_bioparameter("ca_boyle_cond_density").value, 
                                                   id="ca_boyle_all", 
                                                   ion_channel="ca_boyle", 
                                                   erev=self.get_bioparameter("ca_boyle_erev").value,
                                                   ion="ca"))

        ip = IntracellularProperties()
        self.generic_cell.biophysical_properties.intracellular_properties = ip

        # NOTE: resistivity/axial resistance not used for single compartment cell models, so value irrelevant!
        ip.resistivities.append(Resistivity(value="0.1 kohm_cm"))


        # NOTE: Ca reversal potential not calculated by Nernst, so initial_ext_concentration value irrelevant!
        species = Species(id="ca", 
                          ion="ca",
                          concentration_model="CaPool",
                          initial_concentration="0 mM",
                          initial_ext_concentration="2E-6 mol_per_cm3")

        ip.species.append(species)


        self.exc_syn = GradedSynapse(id="exc_syn",
                                conductance =        self.get_bioparameter("exc_syn_conductance").value,
                                delta =              self.get_bioparameter("exc_syn_delta").value,
                                Vth =                self.get_bioparameter("exc_syn_vth").value,
                                erev =               self.get_bioparameter("exc_syn_erev").value,
                                k =                  self.get_bioparameter("exc_syn_k").value)


        self.inh_syn = GradedSynapse(id="inh_syn",
                                conductance =        self.get_bioparameter("inh_syn_conductance").value,
                                delta =              self.get_bioparameter("inh_syn_delta").value,
                                Vth =                self.get_bioparameter("inh_syn_vth").value,
                                erev =               self.get_bioparameter("inh_syn_erev").value,
                                k =                  self.get_bioparameter("inh_syn_k").value)

        self.elec_syn = GapJunction(id="elec_syn",
                               conductance =    self.get_bioparameter("elec_syn_gbase").value)


        self.offset_current = PulseGenerator(id="offset_current",
                                delay=self.get_bioparameter("unphysiological_offset_current_del").value,
                                duration=self.get_bioparameter("unphysiological_offset_current_dur").value,
                                amplitude=self.get_bioparameter("unphysiological_offset_current").value)
コード例 #6
0
                     erev="0mV",
                     tau_rise="1ms",
                     tau_decay="3ms")

nml_doc.exp_two_synapses.append(syn1)

gj = GapJunction(id="gj1", conductance="10pS")

nml_doc.gap_junctions.append(gj)

sil_syn = SilentSynapse(id="silent1")
nml_doc.silent_synapses.append(sil_syn)

grad_syn = GradedSynapse(id="gs1",
                         conductance="0.5pS",
                         delta="5mV",
                         Vth="-55mV",
                         k="0.025per_ms",
                         erev="0mV")
nml_doc.graded_synapses.append(grad_syn)

pfs = PoissonFiringSynapse(id='pfs',
                           average_rate='150Hz',
                           synapse=syn0.id,
                           spike_target="./%s" % syn0.id)

nml_doc.poisson_firing_synapses.append(pfs)

net = Network(id="CompleteNet",
              type="networkWithTemperature",
              temperature="6.3 degC")
コード例 #7
0
ファイル: Weights.py プロジェクト: Starborn/OpenCortex
def generate(reference = "Weights",
             num_each = 6,
             connections=True,
             duration = 1000,
             format='xml'):

    nml_doc, network = oc.generate_network(reference)

    cell_id = 'HH_477127614'
    cell = oc.include_opencortex_cell(nml_doc, 'AllenInstituteCellTypesDB_HH/%s.cell.nml'%cell_id)

    xDim = 500
    yDim = 500
    zDim = 30

    pop_pre = oc.add_population_in_rectangular_region(network, 'pop_pre',
                                                  cell_id, num_each,
                                                  0,0,0, xDim,yDim,zDim,
                                                  color='.8 0 0')

    pop_post_chem_exc = oc.add_population_in_rectangular_region(network, 'pop_post_chem_exc',
                                                  cell_id, num_each+1,
                                                  0,yDim,0, xDim,yDim,zDim,
                                                  color='0 0 .8')

    pop_post_chem_inh = oc.add_population_in_rectangular_region(network, 'pop_post_chem_inh',
                                                  cell_id, num_each+2,
                                                  xDim,yDim,0, xDim,yDim,zDim,
                                                  color='0 .8 .8')
                                                  
    pop_post_cont = oc.add_population_in_rectangular_region(network, 'pop_post_cont',
                                                  cell_id, num_each+3,
                                                  xDim,0,0, xDim,yDim,zDim,
                                                  color='0 .8 0')

    ampa_syn = oc.add_exp_two_syn(nml_doc, id="AMPA_syn", 
                             gbase="10nS", erev="0mV",
                             tau_rise="2ms", tau_decay="10ms")
                             
    gaba_syn = oc.add_exp_two_syn(nml_doc, id="GABA_syn", 
                             gbase="10nS", erev="-80mV",
                             tau_rise="3ms", tau_decay="30ms")

    gj_syn = oc.add_gap_junction_synapse(nml_doc, id="gj0", 
                             conductance=".05nS")
                             
    
    analog_syn = GradedSynapse(id='analog_syn',
                             conductance="10nS",
                             delta="5mV",
                             Vth="-35mV",
                             k="0.025per_ms",
                             erev="0mV")
    silent_syn = SilentSynapse(id="silent1")
    
    nml_doc.graded_synapses.append(analog_syn)
    nml_doc.silent_synapses.append(silent_syn)


    pfs = oc.add_poisson_firing_synapse(nml_doc, id="poissonFiringSyn",
                                       average_rate="10 Hz", synapse_id=ampa_syn.id)

    oc.add_inputs_to_population(network, "Stim0",
                                pop_pre, pfs.id, all_cells=True)


    if connections:
        
        proj_chem_exc = oc.add_probabilistic_projection(network,
                                "proj_chem_exc",
                                pop_pre,
                                pop_post_chem_exc,
                                ampa_syn.id,
                                0.7,
                                weight=1,
                                delay=5)
                                
        for conn in proj_chem_exc.connection_wds:
            if conn.get_pre_cell_id() < 3 and conn.get_post_cell_id() < 3:
                conn.weight = 0.5
        
        proj_chem_inh = oc.add_probabilistic_projection(network,
                                "proj_chem_inh",
                                pop_pre,
                                pop_post_chem_inh,
                                gaba_syn.id,
                                0.7,
                                weight=1,
                                delay=5)
                                
        for conn in proj_chem_inh.connection_wds:
            if conn.get_pre_cell_id() < 3 and conn.get_post_cell_id() < 3:
                conn.weight = 2
            
        
        proj_cont = ContinuousProjection(id='proj_cont', \
                           presynaptic_population=pop_pre.id,
                           postsynaptic_population=pop_post_cont.id)
        network.continuous_projections.append(proj_cont)
        
        for i in range(pop_pre.get_size()):
            for j in range(pop_post_cont.get_size()):
                conn0 = ContinuousConnectionInstanceW(id='%s'%(j+i*pop_pre.get_size()), \
                           pre_cell='../%s/%s/%s'%(pop_pre.id,i,cell_id),
                           post_cell='../%s/%s/%s'%(pop_post_cont.id,j,cell_id),
                           pre_component=silent_syn.id,
                           post_component=analog_syn.id,
                           weight=(i+j)/10.0)
                proj_cont.continuous_connection_instance_ws.append(conn0)
        
        
            
        gj_pops = [pop_pre, pop_post_chem_exc, pop_post_chem_inh, pop_post_cont]
        
        for pre in gj_pops:
            for post in gj_pops:
                
                proj_gap = oc.add_targeted_electrical_projection(nml_doc, 
                                                network,
                                                "proj_",
                                                pre,
                                                post,
                                                targeting_mode='convergent',
                                                synapse_list=[gj_syn.id],
                                                pre_segment_group = 'soma_group',
                                                post_segment_group = 'soma_group',
                                                number_conns_per_cell=3)

                for conn in network.electrical_projections[-1].electrical_connection_instance_ws:
                    conn.weight = conn.get_pre_cell_id() + conn.get_post_cell_id()


    nml_file_name = '%s.net.%s'%(network.id,'nml.h5' if format == 'hdf5' else 'nml')
    target_dir = 'HDF5/' if format == 'hdf5' else './'
    
    oc.save_network(nml_doc, 
                    nml_file_name, 
                    validate=(format=='xml'),
                    format = format,
                    target_dir=target_dir)

    if format=='xml':

        lems_file_name = oc.generate_lems_simulation(nml_doc, network, 
                                nml_file_name, 
                                duration =      duration, 
                                dt =            0.025,
                                gen_plots_for_all_v = True,
                                gen_saves_for_all_v = True)
    else:
        lems_file_name = None

    return nml_doc, nml_file_name, lems_file_name