################################################################################ ### Add a projection if fln>0.0: net.projections.append(Projection(id='proj_%s_%s'%(src,tgt), presynaptic=src, postsynaptic=tgt, synapse='ampa', weight=fln)) #net.projections[0].random_connectivity=RandomConnectivity(probability=0.5) print(net) net.id = 'TestNetwork' print(net.to_json()) new_file = net.to_json_file('Example1_%s.json'%net.id) ################################################################################ ### Export to some formats ### Try: ### python Example1.py -graph2 from neuromllite.NetworkGenerator import check_to_generate_or_run from neuromllite import Simulation import sys check_to_generate_or_run(sys.argv, Simulation(id='SimExample1',network=new_file))
input_source_i = InputSource(id='Inh_in', neuroml2_input='PulseGenerator', parameters={ 'amplitude': 'inh_input', 'delay': 'input_delay', 'duration': 'input_duration' }) net.input_sources.append(input_source_i) net.inputs.append( Input(id='Inh_stim', input_source=input_source_i.id, population=inh_pop.id, percentage=100)) # Save to JSON format net.id = 'WC' new_file = net.to_json_file('WC.json') sim = Simulation(id='SimWC', duration='100', dt='0.005', network=new_file, recordRates={'all': '*'}, plots2D={ 'E-I': { 'x_axis': 'Excitatory/0/Exc/r', 'y_axis': 'Inhibitory/0/Inh/r' } }) sim.to_json_file('SimWC.nmllite.json')
inh_syn = Synapse(id='rsInh', lems_source_file='figure1b_Parameters.xml') net.synapses.append(exc_syn) net.synapses.append(inh_syn) #### Weak GBA syns = {exc_pop.id: exc_syn.id, inh_pop.id: inh_syn.id} W = [['wee', 'wie'], ['wei', 'wii']] # Add internal connections pops = [exc_pop, inh_pop] internal_connections(pops, W, syns) # Save to JSON format net.id = 'Joglekar_figure1b' new_file = net.to_json_file('Joglekar_figure1c.json') sim = Simulation(id='SimJoglekar_figure1b', duration='2', dt='0.02', network=new_file, recordVariables={'r': { 'all': '*' }}) sim.to_json_file('SimJoglekar_figure1c.nmllite.json') check_to_generate_or_run(sys.argv, sim) # Open data file
################################################################################ ### Add a projection net.projections.append( Projection(id="proj0", presynaptic=p0.id, postsynaptic=p1.id, synapse="ampa")) net.projections[0].random_connectivity = RandomConnectivity(probability=0.5) ################################################################################ ### Save to JSON format print(net) net.id = "TestNetwork" print(net.to_json()) new_file = net.to_json_file("Example1_%s.json" % net.id) ################################################################################ ### Export to some formats, e.g. try: ### python Example1.py -graph2 from neuromllite.NetworkGenerator import check_to_generate_or_run from neuromllite import Simulation import sys check_to_generate_or_run(sys.argv, Simulation(id="SimExample1", network=new_file))
percentage=100)) exc_syn = Synapse(id='rsExc', lems_source_file='Demirtas_Parameters.xml') inh_syn = Synapse(id='rsInh', lems_source_file='Demirtas_Parameters.xml') net.synapses.append(exc_syn) net.synapses.append(inh_syn) syns = {exc_pop.id: exc_syn.id, inh_pop.id: inh_syn.id} W = [['wee', 'wie'], ['wei', 'wii']] # Add internal connections pops = [exc_pop, inh_pop] internal_connections(pops, W) # Save to JSON format net.id = 'Demirtas_network' new_file = net.to_json_file('Demirtas_network.json') sim = Simulation(id='SimDemirtas_network', duration='1000', dt='0.1', network=new_file, recordVariables={ 'r': { 'all': '*' }, 'e': { 'all': '*' }, 'f': { 'all': '*'