コード例 #1
0
 def initdend (self):
   self.dend = h.Section()
   self.dend.nseg = 1
   self.dend.diam = 2
   self.dend.L = 500
   self.dend.Ra = 1
   self.dend.insert('pas')
   self.ampa = h.AMPA(0.5,sec=self.dend)
   self.nmda = h.NMDA(0.5,sec=self.dend)
   self.gabaa0 = h.GABAa(0.5,sec=self.dend)
コード例 #2
0
from neuron import h
import neuron.gui

soma = h.Section(name='soma')
soma.insert('hh')
ampa = h.AMPA(0.5, sec=soma)
ampa.gbar = 1  # Just increasing, for testing purpose

#expSyn = h.ExpSyn(0.5, soma)
#expSyn.e = 10
#expSyn.i = 3
#expSyn.tau = 3

netStim = h.NetStim()
netStim.start = 1
netStim.interval = 1
netStim.number = 3

netCon = h.NetCon(netStim, ampa)
#netCon = h.NetCon(netStim, expSyn)
netCon.weight[0] = 1
コード例 #3
0
 def __init__(self, TTX = False, Pool1_num = 9, Pool2_num = 9, Beta = 0.067,
Cdur = 1, Syn_w1 = 0.01, Syn_w2 = 0.01, Loc = [0.2, 0.6]):
    """
    Model the Glumate Stimulation.
    Model the Receptors in 2 pools:
        Pool 1: AMPA + NMDA (same synaptic weight, represent spine conductance)
        Pool 2: NMDA only (represent the extrasyanptic NMDARs)

    Parameters:
    -----------
    TTX: True or False.
        True: setting all the sodium channel conductance to 0 to mimic
              TTX application in experiments
        False: default
    Pool1_num: syanptic AMPA/NMDA numbers
    Pool2_num: extrasyanptic NMDA numbers
    Beta: parameter for NMDA Receptors
    Cdur: parameter for NMDA Receptors
    Syn_w1: the syanptic weight of AMPA/NMDA receptors in pool1
    Syn_w2: the syanptic weight of AMPA/NMDA receptors in pool2
    Loc: the stimulation location
    -----------
    Outputs:
        Figures: recording from soma and 3 different locations from basal dendrites
        json: soma and dendritc voltage recording and parameters info
    """
    Cell = de.CA229(HVA_ratio = 0.0, LVA_ratio = 0.0)
    self.Cell = Cell
    # Can adjust channel conductance ratio here:
    # eg. Cell = CA229(KA_ratio = 0.5)
    ###########################################
    timestr = time.strftime("%H%M")
    data = time.strftime("%m_%d")
    # directory = 'Data_' + data +'/'
    directory_root = 'Fig3/'
    directory = directory_root + 'DMS/Plot/'
    # directory = directory_root + 'DMS/Analysis/'

    if (TTX == True):
        Cell.TTX()
        title = "TTX_Pool1_"+ str(Pool1_num) + "_Pool2_" + str(Pool2_num) + "_NMDA_Beta_" + \
            str(Beta) + "_NMDA_Cdur_"+str(Cdur)+ "_Pool1_W_" + str(Syn_w1) + \
            "_Pool2_W_" + str(Syn_w2) + "_"+ timestr
    else:
        title = "Pool1_"+ str(Pool1_num) + "_Pool2_" + str(Pool2_num) + "_NMDA_Beta_" + \
            str(Beta) + "_NMDA_Cdur_"+str(Cdur)+ "_Pool1_W_" + str(Syn_w1) + \
            "_Pool2_W_" + str(Syn_w2) + "_"+ timestr

    ###########################################
    # Adding Pool 1
    ###########################################
    ##### AMPA
    SynAMPA = []
    nc_AMPA = []
    SynNMDA = []
    nc_NMDA = []
    self.SynAMPA = SynAMPA
    self.nc_AMPA = nc_AMPA
    self.SynNMDA = SynNMDA
    self.nc_NMDA = nc_NMDA

    ###########################################
    loc1 = list(np.linspace(Loc[0], Loc[1], Pool1_num))
    ###########################################
    # Loc and time delay set up
    delay1 = random_2(10, 50 + int(Syn_w1*50), Pool1_num)
    # delay1 = random_beta(10, 50 + int(Syn_w1*50), Pool1_num)
    ns = h.NetStim()
    self.ns = ns
    ns.interval = 20
    ns.number = 1
    ns.start = 190
    ns.noise = 0
    ###########################################
    for i in range(Pool1_num):
        ###########################
        # Adding AMPA
        SynAMPA.append(h.AMPA(Cell.basal[34](loc1[i])))
        SynAMPA[-1].gmax = 0.05
        nc_AMPA.append(h.NetCon(ns, SynAMPA[i]))
        nc_AMPA[-1].delay = delay1[i]
        nc_AMPA[-1].weight[0] = Syn_w1
        ###########################
        #Adding NMDA
        SynNMDA.append(h.NMDA(Cell.basal[34](loc1[i])))
        SynNMDA[-1].gmax = 0.005
        SynNMDA[-1].Beta = Beta
        SynNMDA[-1].Cdur = Cdur
        nc_NMDA.append(h.NetCon(ns, SynNMDA[i]))
        nc_NMDA[-1].delay = delay1[i]
        nc_NMDA[-1].weight[0] = Syn_w1

    ###########################################
    # Adding Pool 2
    ###########################################
    ExNMDA = []
    nc_ExNMDA = []
    self.ExNMDA = ExNMDA
    self.nc_ExNMDA = nc_ExNMDA

    loc2 = list(np.linspace(Loc[0], Loc[1], Pool2_num))
#    delay2 = list(np.linspace(5, 10, Pool2_num))
    delay2 = random_2(15, 55 + int(Syn_w2*60), Pool2_num)
    # delay2 = random_beta(15, 55 + int(Syn_w2*60), Pool2_num)
    for i in range(Pool2_num):
        ###########################
        # Adding extrasyanptic NMDA
        ExNMDA.append(h.NMDA(Cell.basal[34](loc2[i])))
        ExNMDA[-1].gmax = 0.005
        ExNMDA[-1].Beta = Beta
        ExNMDA[-1].Cdur = Cdur

        nc_ExNMDA.append(h.NetCon(ns, ExNMDA[i]))
        nc_ExNMDA[-1].delay = delay2[i]
        nc_ExNMDA[-1].weight[0] = Syn_w2

    ###########################################
    ### Recording
    ###########################################
    t_vec = h.Vector()
    t_vec.record(h._ref_t)
    v_vec_soma = h.Vector()
    v_vec_dend1 = h.Vector()
    v_vec_dend2 = h.Vector()
    v_vec_dend3 = h.Vector()
    cai_soma = h.Vector()
    cai_dend = h.Vector()

    v_vec_soma.record(Cell.soma[2](0.5)._ref_v)
    v_vec_dend1.record(Cell.basal[34](0.8)._ref_v)
    v_vec_dend2.record(Cell.basal[34](0.5)._ref_v)
    v_vec_dend3.record(Cell.basal[34](0.3)._ref_v)
    cai_soma.record(Cell.soma[2](0.5)._ref_cai)
    cai_dend.record(Cell.basal[34](0.3)._ref_cai)


    ###########################################
    ### Run & Plot
    ###########################################
    h.celsius = 32
    h.v_init =  -73.6927850677
    h.init()
    h.tstop = 1000
    h.run()

#    pdb.set_trace()   #Debugging
    # print v_vec_soma[-1]
    # plt.clf()
    # plt.close()
    # plt.figure(figsize = (16, 6), dpi = 100)
    # plt.plot(t_vec, v_vec_soma, label = 'soma(0.5)', color = 'black')
    # plt.plot(t_vec, v_vec_dend1, label = 'bdend[34](0.8)', color = 'red')
    # plt.plot(t_vec, v_vec_dend2, label = 'Basal[34](0.5)', color = 'blue')
    # plt.plot(t_vec, v_vec_dend3, label = 'Basal[34](0.3)', color = 'green')
    # plt.ylim([-90, 40])
    # plt.xlim([0, 800])
    # plt.legend(loc = 'best')
    # plt.ylabel('mV')
    # plt.xlabel('Time (ms)')
    # plt.title ("Glumate Receptor Activated Plateau Potential")
    #
    # save(title, directory, ext="png", close=True, verbose=True)

    #######################
    # Plot the intracelluar calcium concentration
    # plt.clf()
    # plt.close()
    # plt.figure(figsize = (16, 6), dpi = 100)
    # plt.plot(t_vec, cai_soma, label = 'soma(0.5)', color = 'black')
    # #plt.plot(t_vec, cai_dend, label = 'bdend[34](0.3)', color = 'red')
    #
    # # plt.ylim([-90, 60])
    # plt.xlim([0, 800])
    # plt.legend(loc = 'best')
    # plt.ylabel('mM')
    # plt.xlabel('Time (ms)')
    # plt.title ("Calcium concentration")
    # title1 = "Calcium_" + title
    # ut.save(title1, directory, ext="png", close=True, verbose=True)

    data = ut.Vividict()
    data['SynAMPA']['num'] = Pool1_num
    data['SynAMPA']['locs'] = loc1
    data['SynAMPA']['weight'] = Syn_w1
    data['SynNMDA']['num'] = Pool1_num
    data['SynNMDA']['locs'] = loc1
    data['SynNMDA']['weight'] = Syn_w1
    data['SynNMDA']['Beta'] = Beta
    data['SynNMDA']['Cdur'] = Cdur
    data['ExNMDA']['num'] = Pool2_num
    data['ExNMDA']['locs'] = loc2
    data['ExNMDA']['weight'] = Syn_w2
    data['ExNMDA']['Beta'] = Beta
    data['ExNMDA']['Cdur'] = Cdur

    data['recording']['time'] = list(t_vec)
    data['recording']['soma']['voltage'] = list(v_vec_soma)
    data['recording']['basal_34']['voltage_0.8'] = list(v_vec_dend1)
    data['recording']['basal_34']['voltage_0.5'] = list(v_vec_dend2)
    data['recording']['basal_34']['voltage_0.3'] = list(v_vec_dend3)
    data['recording']['soma']['ica'] = list(cai_soma)
    data['recording']['basal_34']['ica_0.3'] = list(cai_dend)


    ut.savejson(data, title, directory, ext = "json", verbose = False)
コード例 #4
0
ファイル: n1.py プロジェクト: g13/bNEURON
def prepCell(gList, loc, pos, n, v0, alphaR=True):
    f = open('pylog', 'a')
    #print '    location,  strength,   pos'
    #print >>f, '    location,  strength,   pos'
    #for i in xrange(n):
    #    print '#{:2d}   {:3d}      {: 1.1e}    {:0.1f}'.format(i,loc[i],gList[i],pos[i])
    #    print >>f, '#{:2d}   {:3d}      {: 1.1e}    {:0.1f}'.format(i,loc[i],gList[i],pos[i])
    print >> f, 'gList = np.array([',
    print 'gList = np.array([',
    for i in xrange(n):
        if i == n - 1:
            print >> f, gList[i],
            print gList[i],
        else:
            print >> f, gList[i], ', ',
            print gList[i], ', ',
    print >> f, '])'
    print '])'

    print >> f, 'loc = np.array([',
    print 'loc = np.array([',
    for i in xrange(n):
        if i == n - 1:
            print >> f, loc[i],
            print loc[i],
        else:
            print >> f, loc[i], ', ',
            print loc[i], ', ',
    print >> f, '])'
    print '])'

    print >> f, 'pos = np.array([',
    print 'pos = np.array([',
    for i in xrange(n):
        if i == n - 1:
            print >> f, pos[i],
            print pos[i],
        else:
            print >> f, pos[i], ', ',
            print pos[i], ', ',
    print >> f, '])'
    print '])'

    h.cvode.active(0)
    cell = RealisticNeuron(v0)
    cell.soma.push()
    h.distance()
    h.pop_section()
    vecStimList = [h.VecStim() for i in xrange(n)]
    synList = []
    dist = np.zeros((n))
    print >> f, 'distance = np.array([',
    print 'distance = np.array([',
    for i in xrange(n):
        cell.dend[loc[i]].push()
        if gList[i] < 0:
            if alphaR:
                synList.append(h.ALPHAI())
            else:
                synList.append(h.GABAa())
        else:
            if alphaR:
                synList.append(h.ALPHAE())
            else:
                synList.append(h.AMPA())
        synList[i].loc(pos[i])
        h.setpointer(vecStimList[i]._ref_y, 'pre', synList[i])
        h.pop_section()
        if gList[i] < 0:
            if alphaR:
                synList[i].f = -gList[i]
            else:
                synList[i].gmax = -gList[i]
        else:
            if alphaR:
                synList[i].f = gList[i]
            else:
                synList[i].gmax = gList[i]
        dist[i] = h.distance(cell.dend[loc[i]](pos[i]))
        if i == n - 1:
            print >> f, dist[i],
            print dist[i],
        else:
            print >> f, dist[i], ', ',
            print dist[i], ', ',

    print >> f, '])'
    print '])'
    f.close()
    return cell, vecStimList, synList, dist
コード例 #5
0
def Glu_Stim(Bnum=34,
             TTX=False,
             Pool1_num=9,
             Pool2_num=9,
             Syn_w1=0.01,
             Syn_w2=0.01,
             Loc=[0.2, 0.6],
             DenLoc=0.5):
    """
    Model the Glumate Stimulation.
    Model the Receptors in 2 pools:
        Pool 1: AMPA + NMDA (same synaptic weight, represent spine conductance)
        Pool 2: NMDA only (represent the extrasyanptic NMDARs)

    Parameters:
    -----------
    Bnum: the number of basal branch to explore
    TTX: True or False.
        True: setting all the sodium channel conductance to 0.
        False: default
    Pool1_num: syanptic AMPA/NMDA numbers
    Pool2_num: extrasyanptic NMDA numbers
    Syn_w1: the syanptic weight of AMPA/NMDA receptors in pool1
    Syn_w2: the syanptic weight of AMPA/NMDA receptors in pool2
    Loc: the stimulation location
    DenLoc: the targeted recording location on dendrite
    -----------
    Outputs:
        Figures: recording from soma and 3 different locations from basal dendrites
        json: soma and dendritc voltage recording and parameters info
    """
    Cell = de.CA229()
    timestr = time.strftime("%Y%m%d-%H%M")
    data = time.strftime("%m_%d")
    directory_root = "Fig5/Major/"

    L1 = "{:.2f}".format(Loc[0])
    L2 = "{:.2f}".format(Loc[1])
    if (TTX == True):
        Cell.TTX()
        directory = directory_root + "B" + str(
            Bnum) + "/Loc" + L1 + "_" + L2 + "/TTX/"
        title =  "TTX_Pool1_"+ \
        str(Pool1_num) + "_Pool2_" + str(Pool2_num) + \
        "_Pool1_W_" + str(Syn_w1) + \
        "_Pool2_W_" + str(Syn_w2) + "_"+ timestr
    else:
        directory = directory_root + "B" + str(
            Bnum) + "/Loc" + L1 + "_" + L2 + "/N/"
        title = "Pool1_"+ \
        str(Pool1_num) + "_Pool2_" + str(Pool2_num) + \
        "_Pool1_W_" + str(Syn_w1) + \
        "_Pool2_W_" + str(Syn_w2) + "_"+ timestr

    ###########################################
    # Adding Pool 1
    ###########################################
    ##### AMPA
    SynAMPA = []
    nc_AMPA = []
    SynNMDA = []
    nc_NMDA = []

    loc1 = list(np.linspace(Loc[0], Loc[1], Pool1_num))
    ###########################################
    delay1 = random_2(10, 20 + int(Syn_w1 * 50), Pool1_num)
    ns = h.NetStim()
    ns.interval = 20
    ns.number = 1
    ns.start = 190
    ns.noise = 0

    for i in range(Pool1_num):
        ###########################
        # Adding AMPA
        SynAMPA.append(h.AMPA(Cell.basal[Bnum](loc1[i])))
        SynAMPA[-1].gmax = 0.05
        nc_AMPA.append(h.NetCon(ns, SynAMPA[i]))
        nc_AMPA[-1].delay = delay1[i]
        nc_AMPA[-1].weight[0] = Syn_w1
        ###########################
    for i in range(Pool1_num):
        tempNMDA = h.nmda(Cell.basal[Bnum](loc1[i]))
        tempNMDA.gmax = 0.005 * Syn_w1
        tempNMDA.onset = delay1[i] + ns.start
        SynNMDA.append(tempNMDA)
    ###########################################
    # Adding Pool 2
    ###########################################
    ExNMDA = []
    nc_ExNMDA = []

    loc2 = list(np.linspace(Loc[0], Loc[1], Pool2_num))
    delay2 = random_2(15, 25 + int(Syn_w2 * 60), Pool2_num)
    for i in range(Pool2_num):
        ###########################
        # Adding extrasyanptic NMDA
        tempNMDA2 = h.nmda(Cell.basal[Bnum](loc2[i]))
        tempNMDA2.gmax = 0.005 * Syn_w2
        tempNMDA2.onset = delay2[i] + ns.start
        ExNMDA.append(tempNMDA2)

    ###########################################
    ### Recording
    ###########################################
    t_vec = h.Vector()
    t_vec.record(h._ref_t)
    v_vec_soma = h.Vector()
    v_vec_dend1 = h.Vector()
    v_vec_dend2 = h.Vector()
    v_vec_dend3 = h.Vector()
    v_vec_dend = h.Vector()

    v_vec_soma.record(Cell.soma[2](0.5)._ref_v)
    v_vec_dend1.record(Cell.basal[Bnum](0.8)._ref_v)
    v_vec_dend2.record(Cell.basal[Bnum](0.5)._ref_v)
    v_vec_dend3.record(Cell.basal[Bnum](0.3)._ref_v)
    v_vec_dend.record(Cell.basal[Bnum](DenLoc)._ref_v)

    ###########################################
    ### Run & Plot
    ###########################################
    h.celsius = 32
    h.v_init = -73.6927850677
    h.init()
    h.tstop = 1000
    h.run()

    #    pdb.set_trace()   #Debugging
    # plt.figure(figsize = (16, 6), dpi = 100)
    # plt.plot(t_vec, v_vec_soma, label = 'soma(0.5)', color = 'black')
    # plt.plot(t_vec, v_vec_dend1, label = 'Basal['+str(Bnum)+'](0.8)', color = 'red')
    # plt.plot(t_vec, v_vec_dend2, label = 'Basal['+str(Bnum)+'](0.5)', color = 'blue')
    # plt.plot(t_vec, v_vec_dend3, label = 'Basal['+str(Bnum)+'](0.3)', color = 'green')
    # plt.ylim([-90, 40])
    # plt.xlim([0, 700])
    # plt.legend(loc = 'best')
    # plt.ylabel('mV')
    # plt.xlabel('Time (ms)')
    # plt.title ("Glumate Receptor Activated Plateau Potential")
    # save(title, directory, ext="png", close=True, verbose=True)

    data = ut.Vividict()
    data['TTX'] = TTX
    data['SynAMPA']['num'] = Pool1_num
    data['SynAMPA']['locs'] = Loc
    data['SynAMPA']['weight'] = Syn_w1
    data['SynNMDA']['num'] = Pool1_num
    data['SynNMDA']['locs'] = Loc
    data['SynNMDA']['weight'] = Syn_w1
    data['ExNMDA']['num'] = Pool2_num
    data['ExNMDA']['locs'] = Loc
    data['ExNMDA']['weight'] = Syn_w2

    data['recording']['time'] = list(t_vec)
    data['recording']['soma']['voltage'] = list(v_vec_soma)
    data['recording']['basal']['voltage_0.8'] = list(v_vec_dend1)
    data['recording']['basal']['voltage_0.5'] = list(v_vec_dend2)
    data['recording']['basal']['voltage_0.3'] = list(v_vec_dend3)
    data['recording']['basal']['voltage_input'] = list(v_vec_dend)

    ut.savejson(data, title, directory, ext="json", verbose=False)
コード例 #6
0
print 'distal_re dendrites: ', seldist_re, '\n', seldistname_re
print '------------------------------------------------------'
#print seldistname_re[1]
########################################################################
###### randomly selecting n secs from the list of secs
send = []
receive = []
syn = []
nc = []
vec = {}
for counter in range(0, 3):  # (0, how many secs to take)
    nprox = randint(0, len(selprox_re) - 1)
    send.append(selprox_re[nprox])
    ndist = randint(0, len(seldist_re) - 1)
    receive.append(seldist_re[ndist])
    syni = h.AMPA(0.5, sec=receive[counter])
    syn.append(syni)
    nci = h.NetCon(send[counter](0.5)._ref_v, syni, sec=send[counter])
    nci.weight[0] = 0.2
    nc.append(nci)

    #print selprox_re[nprox]
    print "sender[counter] = ", send[counter].name()
    print "receiver[counter] = ", receive[counter].name()

    #selprox_re.remove(selprox_re[nprox])
    #seldist_re.remove(seldist_re[ndist])

#	h.run()
########################################################################
'''
コード例 #7
0
def Glu_Stim(TTX = False, Pool1_num = 9, Pool2_num = 9, Beta = 0.067,
Cdur = 1, Syn_w1 = 0.01, Syn_w2 = 0.01, Loc = [0.2, 0.6]):
    """
    Model the Glumate Stimulation.
    Model the Receptors in 2 pools:
        Pool 1: AMPA + NMDA (same synaptic weight, represent spine conductance)
        Pool 2: NMDA only (represent the extrasyanptic NMDARs)

    Parameters:
    -----------
    TTX: True or False.
        True: setting all the calcium channel conductance to 0.
        False: default
    Pool1_num: syanptic AMPA/NMDA numbers
    Pool2_num: extrasyanptic NMDA numbers
    Beta: NMDA Receptors
    Cdur: NMDA Receptors
    Syn_w1: the syanptic weight of AMPA/NMDA receptors in pool1
    Syn_w2: the syanptic weight of AMPA/NMDA receptors in pool2
    Loc: the stimulation location
    -----------
    Outputs:
        Figures: recording from soma and 3 different locations from basal dendrites
        json: soma and dendritc voltage recording and parameters info
    """
    ###########################################
    Cell = CA229()
    timestr = time.strftime("%Y%m%d-%H%M")
    data = time.strftime("%m_%d")
    directory = 'Data_' + data +'/'

    if (TTX == True):
        Cell.TTX()
        title = "TTX_Pool1_"+ str(Pool1_num) + "_Pool2_" + str(Pool2_num) + "_NMDA_Beta_" + \
            str(Beta) + "_NMDA_Cdur_"+str(Cdur)+ "_Pool1_W_" + str(Syn_w1) + \
            "_Pool2_W_" + str(Syn_w2) + "_"+ timestr + "_joe"
    else:
        title = "Pool1_"+ str(Pool1_num) + "_Pool2_" + str(Pool2_num) + "_NMDA_Beta_" + \
            str(Beta) + "_NMDA_Cdur_"+str(Cdur)+ "_Pool1_W_" + str(Syn_w1) + \
            "_Pool2_W_" + str(Syn_w2) + "_"+ timestr + "_joe"

    ##########

    glutAmp           = Syn_w1
    glutAmpExSynScale = Syn_w2 / Syn_w1
    glutAmpDecay      = 0.0 #5.0 # percent/um
    synLocMiddle      = (loc[0] + loc[1])/2
    synLocRadius      = synLocMiddle - loc[0]
    initDelay         = 10.0
    synDelay          = 0.5 # ms/um
    exSynDelay        = 1.0 # ms/um

    branch_length     = 166.25942491682142 # CA229.basal[34].L
    numSyns           = Pool1_num
    numExSyns         = Pool2_num
    glutAmp           = Syn_w1

    syn_locs = np.linspace(synLocMiddle-synLocRadius, synLocMiddle+synLocRadius, numSyns)
    syn_dists = branch_length * np.abs(syn_locs - synLocMiddle)
    syn_weights = glutAmp * (1 - syn_dists * glutAmpDecay/100)
    syn_weights = [weight if weight > 0.0 else 0.0 for weight in syn_weights]
    syn_delays = initDelay + (synDelay * syn_dists)

    exsyn_locs = np.linspace(synLocMiddle-synLocRadius, synLocMiddle+synLocRadius, numExSyns)
    exsyn_dists = branch_length * np.abs(exsyn_locs - synLocMiddle)
    exsyn_weights = glutAmpExSynScale * glutAmp * (1 - exsyn_dists * glutAmpDecay/100)
    exsyn_weights = [weight if weight > 0.0 else 0.0 for weight in exsyn_weights]
    exsyn_delays = initDelay + (exSynDelay * exsyn_dists)


    ###########################################
    # Adding Pool 1
    ###########################################
    ##### AMPA
    SynAMPA = []
    nc_AMPA = []
    SynNMDA = []
    nc_NMDA = []

    loc1 = list(np.linspace(Loc[0], Loc[1], Pool1_num))
    #delay1 = random_2(10, 50 + int(Syn_w1*50), Pool1_num)
    delay1 = syn_delays
    ns = h.NetStim()
    ns.interval = 20
    ns.number = 1
    ns.start = 190
    ns.noise = 0

    print
    print("delay1")
    print(delay1)
    print
    print("mean: %f" % (np.mean(delay1)))
    print("std : %f" % (np.std(delay1)))

    for i in range(Pool1_num):
        ###########################
        # Adding AMPA
        SynAMPA.append(h.AMPA(Cell.basal[34](loc1[i])))
        SynAMPA[-1].gmax = 0.04
        #SynAMPA1[-1].Beta = 0.28
        nc_AMPA.append(h.NetCon(ns, SynAMPA[i]))
        nc_AMPA[-1].delay = delay1[i] # delay1[i] #uniform(1,20)
        nc_AMPA[-1].weight[0] = syn_weights[i] # Syn_w1
        #nc_AMPA[-1].threshold = -20
        ###########################
        #Adding NMDA
        # SynNMDA.append(h.NMDA(Cell.basal[34](loc1[i])))
        # Using NMDAeee.mod file
        SynNMDA.append(h.NMDAeee(Cell.basal[34](loc1[i])))
        SynNMDA[-1].gmax = 0.01
        SynNMDA[-1].Beta = Beta
        SynNMDA[-1].Cdur = Cdur
        nc_NMDA.append(h.NetCon(ns, SynNMDA[i]))
        nc_NMDA[-1].delay = delay1[i] #uniform(1,20)
        nc_NMDA[-1].weight[0] = syn_weights[i] # Syn_w1

    ###########################################
    # Adding Pool 2
    ###########################################
    ExNMDA = []
    nc_ExNMDA = []

    loc2 = list(np.linspace(Loc[0], Loc[1], Pool2_num))
    #delay2 = random_2(15, 55 + int(Syn_w2*60), Pool2_num)
    delay2 = exsyn_delays

    print
    print("delay2")
    print(delay2)
    print
    print("mean: %f" % (np.mean(delay2)))
    print("std : %f" % (np.std(delay2)))

    for i in range(Pool2_num):
        ###########################
        # Adding extrasyanptic NMDA
        # ExNMDA.append(h.NMDA(Cell.basal[34](loc2[i])))
        # Using NMDAeee.mod file
        ExNMDA.append(h.NMDAeee(Cell.basal[34](loc2[i])))
        ExNMDA[-1].gmax = 0.01
        ExNMDA[-1].Beta = Beta
        ExNMDA[-1].Cdur = Cdur
        nc_ExNMDA.append(h.NetCon(ns, ExNMDA[i]))
        nc_ExNMDA[-1].delay = delay2[i] #uniform(1,20)
        nc_ExNMDA[-1].weight[0] = exsyn_weights[i] # Syn_w2 #(i/5.0)*Syn_w2

    ###########################################
    ### Recording
    ###########################################
    t_vec = h.Vector()
    t_vec.record(h._ref_t)
    v_vec_soma = h.Vector()
    v_vec_dend1 = h.Vector()
    v_vec_dend2 = h.Vector()
    v_vec_dend3 = h.Vector()
    cai_soma = h.Vector()
    cai_dend = h.Vector()

    v_vec_soma.record(Cell.soma[2](0.5)._ref_v)
    v_vec_dend1.record(Cell.basal[34](0.8)._ref_v)
    v_vec_dend2.record(Cell.basal[34](0.5)._ref_v)
    v_vec_dend3.record(Cell.basal[34](0.3)._ref_v)
    cai_soma.record(Cell.soma[2](0.5)._ref_cai)
    cai_dend.record(Cell.basal[34](0.3)._ref_cai)


    ###########################################
    ### Run & Plot
    ### Be careful, vmax does not have value before run
    ###########################################
    h.celsius = 32 # 32
    h.v_init =  -79.1863191308 #-81.0866900034 #-78.1162028163 #-67.3
    h.init()
    h.tstop = 1000
    h.run()

    plt.clf()
    plt.close()
    plt.figure(figsize = (16, 6), dpi = 100)
    plt.plot(t_vec, v_vec_soma, label = 'soma(0.5)', color = 'black')
    plt.plot(t_vec, v_vec_dend1, label = 'bdend[34](0.8)', color = 'red')
    plt.plot(t_vec, v_vec_dend2, label = 'Basal[34](0.5)', color = 'blue')
    plt.plot(t_vec, v_vec_dend3, label = 'Basal[34](0.3)', color = 'green')
    plt.ylim([-90, 40])
    plt.xlim([0, 800])
    plt.legend(loc = 'best')
    plt.ylabel('mV')
    plt.xlabel('Time (ms)')
    plt.title ("Glumate Receptor Activated Plateau Potential")

    save(title, directory, ext="png", close=True, verbose=True)

    #######################
    # Plot the intracelluar calcium concentration
    # plt.clf()
    # plt.close()
    # plt.figure(figsize = (16, 6), dpi = 100)
    # plt.plot(t_vec, cai_soma, label = 'soma(0.5)', color = 'black')
    # #plt.plot(t_vec, cai_dend, label = 'bdend[34](0.3)', color = 'red')
    #
    # # plt.ylim([-90, 60])
    # plt.xlim([0, 800])
    # plt.legend(loc = 'best')
    # plt.ylabel('mM')
    # plt.xlabel('Time (ms)')
    # plt.title ("Calcium concentration")
    # title1 = "Calcium_" + title
    # save(title1, directory, ext="png", close=True, verbose=True)


    data = Vividict()
    data['SynAMPA']['num'] = Pool1_num
    data['SynAMPA']['locs'] = loc1
    data['SynAMPA']['weight'] = Syn_w1
    data['SynNMDA']['num'] = Pool1_num
    data['SynNMDA']['locs'] = loc1
    data['SynNMDA']['weight'] = Syn_w1
    data['SynNMDA']['Beta'] = Beta
    data['SynNMDA']['Cdur'] = Cdur
    data['ExNMDA']['num'] = Pool2_num
    data['ExNMDA']['locs'] = loc2
    data['ExNMDA']['weight'] = Syn_w2
    data['ExNMDA']['Beta'] = Beta
    data['ExNMDA']['Cdur'] = Cdur

    data['recording']['time'] = list(t_vec)
    data['recording']['soma']['voltage'] = list(v_vec_soma)
    data['recording']['basal_34']['voltage_0.8'] = list(v_vec_dend1)
    data['recording']['basal_34']['voltage_0.5'] = list(v_vec_dend2)
    data['recording']['basal_34']['voltage_0.3'] = list(v_vec_dend3)
    data['recording']['soma']['ica'] = list(cai_soma)
    data['recording']['basal_34']['ica_0.3'] = list(cai_dend)

    savejson(data, title, directory, ext = "json", verbose = False)
コード例 #8
0
def syn_stim():
    spi6 = initcell("SPI6")

    num_syns = 1
    factor = 3.0
    nclist = []
    synlist = []

    stim = h.NetStim()
    stim.number = 1
    stim.interval = 0.0
    stim.start = 200
    h.tstop = 800

    time = h.Vector()
    time.record(h._ref_t)
    v_soma = h.Vector()
    v_soma.record(spi6.soma(0.5)._ref_v)
    v_bdend = h.Vector()
    v_bdend.record(spi6.Bdend1(0.5)._ref_v)

    # Currents in Bdend: ih, nax, kdr, kap, cal, can, kBk
    i_ih = h.Vector()
    i_ih.record(spi6.Bdend1(0.5).ih._ref_i)
    i_na = h.Vector()
    i_na.record(spi6.Bdend1(0.5)._ref_ina)
    i_k = h.Vector()
    i_k.record(spi6.Bdend1(0.5)._ref_ik)
    i_ca = h.Vector()
    i_ca.record(spi6.Bdend1(0.5)._ref_ica)

    for ind in range(num_syns):

        nmda_syn = h.NMDA(spi6.Bdend1(0.5))
        nc_nmda = h.NetCon(stim, nmda_syn)
        nc_nmda.weight[0] = 0.055 * factor
        nc_nmda.delay = 10
        synlist.append(nmda_syn)
        nclist.append(nc_nmda)

        ampa_syn = h.AMPA(spi6.Bdend1(0.5))
        nc_ampa = h.NetCon(stim, ampa_syn)
        nc_ampa.weight[0] = 0.0055 * factor
        nc_ampa.delay = 10
        synlist.append(ampa_syn)
        nclist.append(nc_ampa)

    i_nmda = h.Vector()
    i_nmda.record(synlist[0]._ref_i)
    i_ampa = h.Vector()
    i_ampa.record(synlist[1]._ref_i)

    h.run()

    plt.figure()
    ax1 = plt.subplot(311)
    plt.plot(time, v_soma, label="Soma")
    plt.plot(time, v_bdend, label="Bdend")
    plt.ylabel("Membrane Potential (mV)")
    plt.legend()

    ax2 = plt.subplot(312, sharex=ax1)
    plt.plot(time, i_nmda, label="NMDA (" + str(nc_nmda.weight[0]) + ")")
    plt.plot(time, i_ampa, label="AMPA (" + str(nc_ampa.weight[0]) + ")")
    plt.ylabel("Synaptic Currents (nA)")
    plt.legend()

    ax3 = plt.subplot(313, sharex=ax1)
    plt.plot(time, i_ih, label="H")
    plt.plot(time, i_na, label="Na")
    plt.plot(time, i_k, label="K")
    plt.plot(time, i_ca, label="Ca")
    plt.ylabel("Membrane Currents (nA)")
    plt.xlabel("Time (ms)")
    plt.xlim([200, 800])
    plt.legend()
    plt.show()