コード例 #1
0
def main(argv=sys.argv):
    ''' NeuroNER main method

    Args:
        parameters_filepath the path to the parameters file
        output_folder the path to the output folder
    '''
    arguments = parse_arguments(argv[1:])

    # fetch data and models from the package
    if arguments['fetch_data'] or arguments['fetch_trained_model']:

        if arguments['fetch_data']:
            neuromodel.fetch_data(arguments['fetch_data'])
        if arguments['fetch_trained_model']:
            neuromodel.fetch_model(arguments['fetch_trained_model'])

        msg = """When the fetch_data and fetch_trained_model arguments are specified, other
            arguments are ignored. Remove these arguments to train or apply a model."""
        print(msg)
        sys.exit(0)

    # create the model
    nn = neuromodel.NeuroNER(**arguments)
    nn.fit()
    nn.close()
コード例 #2
0
def entity_detect(sentence):
    # print("Building model")
    with HiddenPrints():
        neuromodel.fetch_data(dataset)
        neuromodel.fetch_model(model)
        nn = neuromodel.NeuroNER(train_model=False, use_pretrained_model=True)

    # print("predicting")
    entities = nn.predict(sentence)
    return entities
コード例 #3
0
dataset = 'conll2003'
# 'conll2003'
# 'example_unannotated_texts'
# 'i2b2_2014_deid'

model = 'conll_2003_en'

# 'conll_2003_en'
# 'i2b2_2014_glove_spacy_bioes'
# 'i2b2_2014_glove_stanford_bioes'
# 'mimic_glove_spacy_bioes'
# 'mimic_glove_stanford_bioes'
print("Building model")
with HiddenPrints():
    neuromodel.fetch_data(dataset)
    neuromodel.fetch_model(model)
    nn = neuromodel.NeuroNER(train_model=False, use_pretrained_model=True)


def entity_detect(sentence):
    print("predicting")
    with HiddenPrints():
        entity = nn.predict(sentence)
        entities = []
        for i in range(len(entity)):
            entities.append(entity[i]['text'])
    return entities


if __name__ == '__main__':