コード例 #1
0
def main():
    embedding = 'glove'
    embedding_path = '/media/xianyang/OS/workspace/ner/glove.6B/glove.6B.100d.txt'
    word_alphabet, char_alphabet, pos_alphabet, \
    chunk_alphabet, ner_alphabet = conll03_data.create_alphabets("/media/xianyang/OS/workspace/ner/NeuroNLP2/data/alphabets/ner_crf/", None)
    char_dim = 30
    num_filters = 30
    window = 3
    mode = 'LSTM'
    hidden_size = 256
    num_layers = 1
    num_labels = ner_alphabet.size()
    tag_space = 128
    p = 0.5
    bigram = True
    embedd_dim = 100
    use_gpu = False

    print(len(word_alphabet.get_content()['instances']))
    print(ner_alphabet.get_content())

    # writer = CoNLL03Writer(word_alphabet, char_alphabet, pos_alphabet, chunk_alphabet, ner_alphabet)
    network = BiRecurrentConvCRF(embedd_dim,
                                 word_alphabet.size(),
                                 char_dim,
                                 char_alphabet.size(),
                                 num_filters,
                                 window,
                                 mode,
                                 hidden_size,
                                 num_layers,
                                 num_labels,
                                 tag_space=tag_space,
                                 embedd_word=None,
                                 p_rnn=p,
                                 bigram=bigram)
    network.load_state_dict(torch.load('temp/23df51_model45'))

    ner_alphabet.add('B-VEH')
    ner_alphabet.add('I-VEH')
    ner_alphabet.add('B-WEA')
    ner_alphabet.add('I-WEA')
    num_new_word = 0

    with open('temp/target.train.conll', 'r') as f:
        sents = []
        sent_buffer = []
        for line in f:
            if len(line) <= 1:
                sents.append(sent_buffer)
                sent_buffer = []
            else:
                id, word, _, _, ner = line.strip().split()
                if word_alphabet.get_index(word) == 0:
                    word_alphabet.add(word)
                    num_new_word += 1
                sent_buffer.append((word_alphabet.get_index(word),
                                    ner_alphabet.get_index(ner)))

    print(len(word_alphabet.get_content()['instances']))
    print(ner_alphabet.get_content())

    init_embed = network.word_embedd.weight.data
    init_embed = np.concatenate(
        (init_embed, np.zeros((num_new_word, embedd_dim))), axis=0)
    network.word_embedd = Embedding(word_alphabet.size(), embedd_dim,
                                    torch.from_numpy(init_embed))

    old_crf = network.crf
    new_crf = ChainCRF(tag_space, ner_alphabet.size(), bigram=bigram)
    trans_matrix = np.zeros((new_crf.num_labels, old_crf.num_labels))
    for i in range(old_crf.num_labels):
        trans_matrix[i, i] = 1
    new_crf.state_nn.weight.data = torch.FloatTensor(
        np.dot(trans_matrix, old_crf.state_nn.weight.data))
    network.crf = new_crf

    target_train_data = conll03_data.read_data_to_variable(
        'temp/target.train.conll',
        word_alphabet,
        char_alphabet,
        pos_alphabet,
        chunk_alphabet,
        ner_alphabet,
        use_gpu=False,
        volatile=False)
    target_dev_data = conll03_data.read_data_to_variable(
        'temp/target.dev.conll',
        word_alphabet,
        char_alphabet,
        pos_alphabet,
        chunk_alphabet,
        ner_alphabet,
        use_gpu=False,
        volatile=False)
    target_test_data = conll03_data.read_data_to_variable(
        'temp/target.test.conll',
        word_alphabet,
        char_alphabet,
        pos_alphabet,
        chunk_alphabet,
        ner_alphabet,
        use_gpu=False,
        volatile=False)

    num_epoch = 50
    batch_size = 32
    num_data = sum(target_train_data[1])
    num_batches = num_data / batch_size + 1
    unk_replace = 0.0
    # optim = SGD(network.parameters(), lr=0.001, momentum=0.9, weight_decay=0.0, nesterov=True)
    optim = Adam(network.parameters(), lr=1e-3)

    for epoch in range(1, num_epoch + 1):
        train_err = 0.
        train_total = 0.
        start_time = time.time()
        num_back = 0
        network.train()

        for batch in range(1, num_batches + 1):
            word, char, _, _, labels, masks, lengths = conll03_data.get_batch_variable(
                target_train_data, batch_size, unk_replace=unk_replace)

            optim.zero_grad()
            loss = network.loss(word, char, labels, mask=masks)
            loss.backward()
            optim.step()

            num_inst = word.size(0)
            train_err += loss.data[0] * num_inst
            train_total += num_inst

            time_ave = (time.time() - start_time) / batch
            time_left = (num_batches - batch) * time_ave

            if batch % 20 == 0:
                sys.stdout.write("\b" * num_back)
                sys.stdout.write(" " * num_back)
                sys.stdout.write("\b" * num_back)
                log_info = 'train: %d loss: %.4f, time: %.2fs' % (
                    num_batches, train_err / train_total,
                    time.time() - start_time)
                print(log_info)
                num_back = len(log_info)

        writer = CoNLL03Writer(word_alphabet, char_alphabet, pos_alphabet,
                               chunk_alphabet, ner_alphabet)
        os.system('rm temp/output.txt')
        writer.start('temp/output.txt')
        network.eval()
        for batch in conll03_data.iterate_batch_variable(
                target_dev_data, batch_size):
            word, char, pos, chunk, labels, masks, lengths, _ = batch
            preds, _, _ = network.decode(
                word,
                char,
                target=labels,
                mask=masks,
                leading_symbolic=conll03_data.NUM_SYMBOLIC_TAGS)
            writer.write(word.data.cpu().numpy(),
                         pos.data.cpu().numpy(),
                         chunk.data.cpu().numpy(),
                         preds.cpu().numpy(),
                         labels.data.cpu().numpy(),
                         lengths.cpu().numpy())
        writer.close()

        acc, precision, recall, f1 = evaluate('temp/output.txt')
        log_info = 'dev: %f %f %f %f' % (acc, precision, recall, f1)
        print(log_info)

        if epoch % 10 == 0:
            writer = CoNLL03Writer(word_alphabet, char_alphabet, pos_alphabet,
                                   chunk_alphabet, ner_alphabet)
            os.system('rm temp/output.txt')
            writer.start('temp/output.txt')
            network.eval()
            for batch in conll03_data.iterate_batch_variable(
                    target_test_data, batch_size):
                word, char, pos, chunk, labels, masks, lengths, _ = batch
                preds, _, _ = network.decode(
                    word,
                    char,
                    target=labels,
                    mask=masks,
                    leading_symbolic=conll03_data.NUM_SYMBOLIC_TAGS)
                writer.write(word.data.cpu().numpy(),
                             pos.data.cpu().numpy(),
                             chunk.data.cpu().numpy(),
                             preds.cpu().numpy(),
                             labels.data.cpu().numpy(),
                             lengths.cpu().numpy())
            writer.close()

            acc, precision, recall, f1 = evaluate('temp/output.txt')
            log_info = 'test: %f %f %f %f' % (acc, precision, recall, f1)
            print(log_info)

    torch.save(network, 'temp/tuned_0905.pt')
    alphabet_directory = '0905_alphabet/'
    word_alphabet.save(alphabet_directory)
    char_alphabet.save(alphabet_directory)
    pos_alphabet.save(alphabet_directory)
    chunk_alphabet.save(alphabet_directory)
    ner_alphabet.save(alphabet_directory)
コード例 #2
0
ファイル: NERCRF_evaluation.py プロジェクト: lvaleriu/GraphIE
def main():
    # Arguments parser
    parser = argparse.ArgumentParser(
        description='Tuning with DNN Model for NER')
    # Model Hyperparameters
    parser.add_argument('--mode',
                        choices=['RNN', 'LSTM', 'GRU'],
                        help='architecture of rnn',
                        default='LSTM')
    parser.add_argument('--encoder_mode',
                        choices=['cnn', 'lstm'],
                        help='Encoder type for sentence encoding',
                        default='lstm')
    parser.add_argument('--char_method',
                        choices=['cnn', 'lstm'],
                        help='Method to create character-level embeddings',
                        required=True)
    parser.add_argument(
        '--hidden_size',
        type=int,
        default=128,
        help='Number of hidden units in RNN for sentence level')
    parser.add_argument('--char_hidden_size',
                        type=int,
                        default=30,
                        help='Output character-level embeddings size')
    parser.add_argument('--char_dim',
                        type=int,
                        default=30,
                        help='Dimension of Character embeddings')
    parser.add_argument('--tag_space',
                        type=int,
                        default=0,
                        help='Dimension of tag space')
    parser.add_argument('--num_layers',
                        type=int,
                        default=1,
                        help='Number of layers of RNN')
    parser.add_argument('--dropout',
                        choices=['std', 'weight_drop'],
                        help='Dropout method',
                        default='weight_drop')
    parser.add_argument('--p_em',
                        type=float,
                        default=0.33,
                        help='dropout rate for input embeddings')
    parser.add_argument('--p_in',
                        type=float,
                        default=0.33,
                        help='dropout rate for input of RNN model')
    parser.add_argument('--p_rnn',
                        nargs=2,
                        type=float,
                        required=True,
                        help='dropout rate for RNN')
    parser.add_argument('--p_out',
                        type=float,
                        default=0.33,
                        help='dropout rate for output layer')
    parser.add_argument('--bigram',
                        action='store_true',
                        help='bi-gram parameter for CRF')

    # Data loading and storing params
    parser.add_argument('--embedding_dict', help='path for embedding dict')
    parser.add_argument('--dataset_name',
                        type=str,
                        default='alexa',
                        help='Which dataset to use')
    parser.add_argument('--train',
                        type=str,
                        required=True,
                        help='Path of train set')
    parser.add_argument('--dev',
                        type=str,
                        required=True,
                        help='Path of dev set')
    parser.add_argument('--test',
                        type=str,
                        required=True,
                        help='Path of test set')
    parser.add_argument('--results_folder',
                        type=str,
                        default='results',
                        help='The folder to store results')
    parser.add_argument('--tmp_folder',
                        type=str,
                        default='tmp',
                        help='The folder to store tmp files')
    parser.add_argument('--alphabets_folder',
                        type=str,
                        default='data/alphabets',
                        help='The folder to store alphabets files')
    parser.add_argument('--result_file_name',
                        type=str,
                        default='hyperparameters_tuning',
                        help='File name to store some results')
    parser.add_argument(
        '--eval_filename',
        type=str,
        required=True,
        help='File name to store the predictions for evaluation')
    parser.add_argument('--result_file_path',
                        type=str,
                        default='results/hyperparameters_tuning',
                        help='File name to store some results')

    # Training parameters
    parser.add_argument('--cuda',
                        action='store_true',
                        help='whether using GPU')
    parser.add_argument('--num_epochs',
                        type=int,
                        default=100,
                        help='Number of training epochs')
    parser.add_argument('--batch_size',
                        type=int,
                        default=16,
                        help='Number of sentences in each batch')
    parser.add_argument('--learning_rate',
                        type=float,
                        default=0.001,
                        help='Base learning rate')
    parser.add_argument('--decay_rate',
                        type=float,
                        default=0.95,
                        help='Decay rate of learning rate')
    parser.add_argument('--schedule',
                        type=int,
                        default=3,
                        help='schedule for learning rate decay')
    parser.add_argument('--gamma',
                        type=float,
                        default=0.0,
                        help='weight for l2 regularization')
    parser.add_argument('--max_norm',
                        type=float,
                        default=1.,
                        help='Max norm for gradients')
    parser.add_argument('--gpu_id',
                        type=int,
                        nargs='+',
                        required=True,
                        help='which gpu to use for training')

    # Misc
    parser.add_argument('--embedding',
                        choices=['glove', 'senna', 'alexa'],
                        help='Embedding for words',
                        required=True)
    parser.add_argument('--restore',
                        action='store_true',
                        help='whether restore from stored parameters')
    parser.add_argument('--save_checkpoint',
                        type=str,
                        default='',
                        help='the path to save the model')
    parser.add_argument('--o_tag',
                        type=str,
                        default='O',
                        help='The default tag for outside tag')
    parser.add_argument('--unk_replace',
                        type=float,
                        default=0.,
                        help='The rate to replace a singleton word with UNK')
    parser.add_argument('--evaluate_raw_format',
                        action='store_true',
                        help='The tagging format for evaluation')

    args = parser.parse_args()

    logger = get_logger("NERCRF")

    # rename the parameters
    mode = args.mode
    encoder_mode = args.encoder_mode
    train_path = args.train
    dev_path = args.dev
    test_path = args.test
    num_epochs = args.num_epochs
    batch_size = args.batch_size
    hidden_size = args.hidden_size
    char_hidden_size = args.char_hidden_size
    char_method = args.char_method
    learning_rate = args.learning_rate
    momentum = 0.9
    decay_rate = args.decay_rate
    gamma = args.gamma
    max_norm = args.max_norm
    schedule = args.schedule
    dropout = args.dropout
    p_em = args.p_em
    p_rnn = tuple(args.p_rnn)
    p_in = args.p_in
    p_out = args.p_out
    unk_replace = args.unk_replace
    bigram = args.bigram
    embedding = args.embedding
    embedding_path = args.embedding_dict
    dataset_name = args.dataset_name
    result_file_name = args.result_file_name
    evaluate_raw_format = args.evaluate_raw_format
    o_tag = args.o_tag
    restore = args.restore
    save_checkpoint = args.save_checkpoint
    gpu_id = args.gpu_id
    results_folder = args.results_folder
    tmp_folder = args.tmp_folder
    alphabets_folder = args.alphabets_folder
    use_elmo = False
    p_em_vec = 0.
    result_file_path = args.result_file_path
    eval_filename = args.eval_filename

    score_file = "%s/score_gpu_%s" % (tmp_folder, '-'.join(map(str, gpu_id)))

    if not os.path.exists(results_folder):
        os.makedirs(results_folder)
    if not os.path.exists(tmp_folder):
        os.makedirs(tmp_folder)
    if not os.path.exists(alphabets_folder):
        os.makedirs(alphabets_folder)

    embedd_dict, embedd_dim = utils.load_embedding_dict(
        embedding, embedding_path)

    logger.info("Creating Alphabets")
    word_alphabet, char_alphabet, ner_alphabet = conll03_data.create_alphabets(
        "{}/{}/".format(alphabets_folder, dataset_name),
        train_path,
        data_paths=[dev_path, test_path],
        embedd_dict=embedd_dict,
        max_vocabulary_size=50000)

    logger.info("Word Alphabet Size: %d" % word_alphabet.size())
    logger.info("Character Alphabet Size: %d" % char_alphabet.size())
    logger.info("NER Alphabet Size: %d" % ner_alphabet.size())

    logger.info("Reading Data")
    device = torch.device('cuda') if args.cuda else torch.device('cpu')
    print(device)

    data_test = conll03_data.read_data_to_tensor(test_path,
                                                 word_alphabet,
                                                 char_alphabet,
                                                 ner_alphabet,
                                                 device=device)
    num_data = sum(data_test[1])
    num_labels = ner_alphabet.size()

    writer = CoNLL03Writer(word_alphabet, char_alphabet, ner_alphabet)

    def construct_word_embedding_table():
        scale = np.sqrt(3.0 / embedd_dim)
        table = np.empty([word_alphabet.size(), embedd_dim], dtype=np.float32)
        table[conll03_data.UNK_ID, :] = np.random.uniform(
            -scale, scale, [1, embedd_dim]).astype(np.float32)
        oov = 0
        for word, index in word_alphabet.items():
            if word in embedd_dict:
                embedding = embedd_dict[word]
            elif word.lower() in embedd_dict:
                embedding = embedd_dict[word.lower()]
            else:
                embedding = np.random.uniform(
                    -scale, scale, [1, embedd_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('oov: %d' % oov)
        return torch.from_numpy(table)

    word_table = construct_word_embedding_table()
    logger.info("constructing network...")

    char_dim = args.char_dim
    window = 3
    num_layers = args.num_layers
    tag_space = args.tag_space
    initializer = nn.init.xavier_uniform_
    if args.dropout == 'std':
        network = BiRecurrentConvCRF(embedd_dim,
                                     word_alphabet.size(),
                                     char_dim,
                                     char_alphabet.size(),
                                     char_hidden_size,
                                     window,
                                     mode,
                                     encoder_mode,
                                     hidden_size,
                                     num_layers,
                                     num_labels,
                                     tag_space=tag_space,
                                     embedd_word=word_table,
                                     use_elmo=use_elmo,
                                     p_em_vec=p_em_vec,
                                     p_em=p_em,
                                     p_in=p_in,
                                     p_out=p_out,
                                     p_rnn=p_rnn,
                                     bigram=bigram,
                                     initializer=initializer)
    elif args.dropout == 'var':
        network = BiVarRecurrentConvCRF(embedd_dim,
                                        word_alphabet.size(),
                                        char_dim,
                                        char_alphabet.size(),
                                        char_hidden_size,
                                        window,
                                        mode,
                                        encoder_mode,
                                        hidden_size,
                                        num_layers,
                                        num_labels,
                                        tag_space=tag_space,
                                        embedd_word=word_table,
                                        use_elmo=use_elmo,
                                        p_em_vec=p_em_vec,
                                        p_em=p_em,
                                        p_in=p_in,
                                        p_out=p_out,
                                        p_rnn=p_rnn,
                                        bigram=bigram,
                                        initializer=initializer)
    else:
        network = BiWeightDropRecurrentConvCRF(embedd_dim,
                                               word_alphabet.size(),
                                               char_dim,
                                               char_alphabet.size(),
                                               char_hidden_size,
                                               window,
                                               mode,
                                               encoder_mode,
                                               hidden_size,
                                               num_layers,
                                               num_labels,
                                               tag_space=tag_space,
                                               embedd_word=word_table,
                                               p_em=p_em,
                                               p_in=p_in,
                                               p_out=p_out,
                                               p_rnn=p_rnn,
                                               bigram=bigram,
                                               initializer=initializer)

    # whether restore from trained model
    if restore:
        network.load_state_dict(torch.load(save_checkpoint +
                                           '_best.pth'))  # load trained model

    network = network.to(device)

    logger.info("Network: %s, encoder_mode=%s, num_layer=%d, hidden=%d, char_hidden_size=%d, char_method=%s, tag_space=%d, crf=%s" % \
        (mode, encoder_mode, num_layers, hidden_size, char_hidden_size, char_method, tag_space, 'bigram' if bigram else 'unigram'))
    logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" %
                (p_in, p_out, p_rnn))

    num_batches = num_data // batch_size + 1
    test_f1 = 0.0
    test_acc = 0.0
    test_precision = 0.0
    test_recall = 0.0

    # evaluate performance on dev data
    with torch.no_grad():
        network.eval()

        # evaluate on test data when better performance detected
        writer.start(eval_filename)

        for batch in conll03_data.iterate_batch_tensor(data_test, batch_size):
            _, word, char, labels, masks, lengths = batch
            preds, _ = network.decode(
                _,
                word,
                char,
                target=labels,
                mask=masks,
                leading_symbolic=conll03_data.NUM_SYMBOLIC_TAGS)
            writer.write(word.cpu().numpy(),
                         preds.cpu().numpy(),
                         labels.cpu().numpy(),
                         lengths.cpu().numpy())
        writer.close()
        test_acc, test_precision, test_recall, test_f1 = evaluate(
            eval_filename, score_file, evaluate_raw_format, o_tag)

    with open(result_file_path, 'a') as ofile:
        ofile.write(
            "test acc: %.2f%%, precision: %.2f%%, recall: %.2f%%, F1: %.2f%%\n"
            % (test_acc, test_precision, test_recall, test_f1))
    print('Evaluation finished!')