コード例 #1
0
ファイル: nii_save.py プロジェクト: seapsy/NeuroRA
def stats_save_nii(corrs,
                   filename,
                   affine,
                   corr_mask=get_HOcort(),
                   size=[60, 60, 60],
                   ksize=[3, 3, 3],
                   strides=[1, 1, 1],
                   p=0.05,
                   df=20,
                   correct_method=None,
                   smooth=False,
                   plotrlt=True,
                   img_background=None):
    """
    Save the searchlight RSA statistical results as a NIfTI file for fMRI

    Parameters
    ----------
    corrs : array
        The statistical results between behavioral data and fMRI data for searchlight.
        The shape of RDMs is [n_x, n_y, n_z, 2]. n_x, n_y, n_z represent the number of calculation units for searchlight
        along the x, y, z axis and 2 represents a t-value and a p-value.
    filename : string. Default is 'rsa_result.nii'.
        The file path+filename for the result .nii file.
        If the filename does not end in ".nii", it will be filled in automatically.
    affine : array or list
        The position information of the fMRI-image array data in a reference space.
    corr_mask : string
        The filename of a mask data for correcting the RSA result.
        It can just be one of your fMRI data files in your experiment for a mask file for ROI. If the corr_mask is a
        filename of a ROI mask file, only the RSA results in ROI will be visible.
    size : array or list [nx, ny, nz]. Default is [60, 60, 60].
        The size of the fMRI-img in your experiments.
    ksize : array or list [kx, ky, kz]. Default is [3, 3, 3].
        The size of the fMRI-img. nx, ny, nz represent the number of voxels along the x, y, z axis
    strides : array or list [sx, sy, sz]. Default is [1, 1, 1].
        The strides for calculating along the x, y, z axis.
    p : float. Default is 0.05.
        The threshold of p-values.
        Only the results those p-values are lower than this value will be visible.
    df : int. Default is 20.
        The degree of freedom.
    correct_method : None or string 'FWE' or 'FDR'. Default is None.
        The method for correcting the RSA results.
        If correct_method='FWE', here the FWE-correction will be used. If correct_methd='FDR', here the FDR-correction
        will be used. If correct_method=None, no correction.
        Only when p<1, correct_method works.
    smooth : bool True or False.  Default is False.
        Smooth the RSA result or not.
    plotrlt : bool True or False.  Default is True.
        Plot the RSA result automatically or not.
    img_background : None or string. Default if None.
        The filename of a background image that the RSA results will be plotted on the top of it.
        If img_background=None, the background will be ch2.nii.gz.
        Only when plotrlt=True, img_background works.

    Returns
    -------
    img : array
        The array of the statistical results t-values map.
        The shape is [nx, ny, nz]. nx, ny, nz represent the size of the fMRI-img.

    Notes
    -----
    A result .nii file of searchlight statistical results will be generated at the corresponding address of filename.
    """

    # get the size of the fMRI-img
    nx = size[0]
    ny = size[1]
    nz = size[2]

    # the size of the calculation units for searchlight
    kx = ksize[0]
    ky = ksize[1]
    kz = ksize[2]

    # strides for calculating along the x, y, z axis
    sx = strides[0]
    sy = strides[1]
    sz = strides[2]

    # calculate the number of the calculation units in the x, y, z directions
    n_x = np.shape(corrs)[0]
    n_y = np.shape(corrs)[1]
    n_z = np.shape(corrs)[2]

    # initialize the indexes to record the number of valid values for each voxel
    index = np.zeros([nx, ny, nz], dtype=np.int)

    # initialize the img array to save the sum-r-value for each voxel
    img_nii = np.zeros([nx, ny, nz], dtype=np.float64)

    # iterate through all the calculation units

    # calculate the indexs
    for i in range(n_x):
        for j in range(n_y):
            for k in range(n_z):
                x = i * sx
                y = j * sy
                z = k * sz

                if (math.isnan(corrs[i, j, k, 0]) is False):

                    for k1 in range(kx):
                        for k2 in range(ky):
                            for k3 in range(kz):
                                index[x + k1, y + k2, z +
                                      k3] = index[x + k1, y + k2, z + k3] + 1

    # initialize a mask in order to record valid voxels (have qualified results)
    mask = np.zeros([nx, ny, nz], dtype=np.int)

    # get the p-values
    corrsp = corrs[:, :, :, 1]

    # calculate the number of voxels for correction
    fadeimg = np.zeros([nx, ny, nz], dtype=np.int)
    for i in range(n_x):
        for j in range(n_y):
            for k in range(n_z):
                x = i * sx
                y = j * sy
                z = k * sz

                # p-values<threshold-p
                if corrsp[i, j, k] < p:

                    for k1 in range(kx):
                        for k2 in range(ky):
                            for k3 in range(kz):
                                fadeimg[x + k1, y + k2, z + k3] = 1

    n_corrected = 0
    for i in range(nx):
        for j in range(ny):
            for k in range(nz):
                if fadeimg[i, j, k] == 1:
                    n_corrected = n_corrected + 1

    print(str(n_corrected) + " voxels corrected")

    # do the correction
    if p < 1:

        # FDR-correction
        if correct_method == "FDR":
            corrsp = fdr_correct(corrsp, p_threshold=p)

        # FWE-correction
        if correct_method == "FWE":
            corrsp = fwe_correct(corrsp, p_threshold=p)

    # iterate through all the calculation units again

    # record the valid voxels
    # [n_x, n_y, n_z] expanses into [nx, ny, nz] based on ksize & strides
    for i in range(n_x):
        for j in range(n_y):
            for k in range(n_z):
                x = i * sx
                y = j * sy
                z = k * sz

                # p-values<threshold-p
                if corrsp[i, j, k] < p:

                    for k1 in range(kx):
                        for k2 in range(ky):
                            for k3 in range(kz):
                                mask[x + k1, y + k2, z + k3] = 1

    # sum of valid values in each calculation units
    for i in range(n_x):
        for j in range(n_y):
            for k in range(n_z):
                x = i * sx
                y = j * sy
                z = k * sz

                if (math.isnan(corrs[i, j, k, 0]) is False):

                    for k1 in range(kx):
                        for k2 in range(ky):
                            for k3 in range(kz):
                                img_nii[x + k1, y + k2, z +
                                        k3] = img_nii[x + k1, y + k2, z +
                                                      k3] + corrs[i, j, k, 0]

    # initialize the newimg array to calculate the avg-r-value for each voxel
    newimg_nii = np.full([nx, ny, nz], np.nan)

    t_threshold = t.isf(p, df)
    print(t_threshold)

    # calculate the avg values of each valid voxel
    for i in range(nx):
        for j in range(ny):
            for k in range(nz):

                # valid voxel
                if mask[i, j, k] == 1:
                    # sum-r-value/index
                    newimg_nii[i, j,
                               k] = float(img_nii[i, j, k] / index[i, j, k])

    # set filename for result .nii file
    if filename == None:
        filename = "rsa_result.nii"
    else:
        q = ".nii" in filename

        if q == True:
            filename = filename
        else:
            filename = filename + ".nii"

    # corr_mask != None
    # use the mask file to correct RSA results
    # in order to avoid results showing outside of the brain
    if corr_mask == get_HOcort():

        mask_to(get_bg_ch2bet(), filename, size, affine)
        mask = nib.load(filename).get_data()
        print(mask.shape)

    else:
        # load the array data of the mask file
        mask = nib.load(corr_mask).get_data()

        # do correction by the mask
        for i in range(nx):
            for j in range(ny):
                for k in range(nz):
                    if (math.isnan(mask[i, j, k]) == True) or mask[i, j,
                                                                   k] == 0:
                        newimg_nii[i, j, k] = np.nan

    # do correction by the mask
    for i in range(nx):
        for j in range(ny):
            for k in range(nz):
                if (math.isnan(mask[i, j, k]) == True) or mask[i, j, k] == 0:
                    newimg_nii[i, j, k] = np.nan
                if newimg_nii[i, j, k] < t_threshold and newimg_nii[i, j,
                                                                    k] > 0:
                    newimg_nii[i, j, k] = np.nan
                if newimg_nii[i, j, k] > -t_threshold and newimg_nii[i, j,
                                                                     k] < 0:
                    newimg_nii[i, j, k] = np.nan

    print(filename)

    # save the .nii file for RSA results
    file = nib.Nifti1Image(newimg_nii, affine)

    if smooth == True:
        # smooth the img data of the .nii file
        file = smooth_img(file, fwhm='fast')

    # save the result
    nib.save(file, filename)

    # determine if it has results
    norlt = np.isnan(newimg_nii).all()
    if norlt == True:
        print("No RSA result.")

    # determine plot the results or not
    if norlt == False and plotrlt == True:
        plot_brainrsa_rlts(filename, background=img_background, type='t')

    print("File(" + filename + ") saves successfully!")

    return newimg_nii
コード例 #2
0
ファイル: t_stuff.py プロジェクト: neurora/NeuroRA
    def test_get_bg_ch2bet(self):

        output = get_bg_ch2bet()
        package_root = os.path.dirname(os.path.abspath(__file__))
        self.assertEqual(output,
                         os.path.join(package_root, 'template/ch2bet.nii.gz'))
コード例 #3
0
ファイル: rsa_plot.py プロジェクト: guishuyunye-lyw/NeuroRA
def plot_brainrsa_montage(img, threshold=None, slice=[6, 6, 6], background=get_bg_ch2bet(), type='r'):

    """
    Plot the RSA-result by different cuts

    Parameters
    ----------
    img : string
        The file path of the .nii file of the RSA results.
    threshold : None or int. Default is None.
        The threshold of the number of voxels used in correction.
        If threshold=n, only the similarity clusters consisting more than threshold voxels will be visible. If it is
        None, the threshold-correction will not work.
    slice : array
        The point where the cut is performed.
        If slice=[slice_x, slice_y, slice_z], slice_x, slice_y, slice_z represent the coordinates of each cut in the x,
        y, z direction. If slice=[[slice_x1, slice_x2], [slice_y1, slice_y2], [slice_z1, slice_z2]], slice_x1 & slice_x2
        represent the coordinates of each cut in the x direction, slice_y1 & slice_y2 represent the coordinates of each
        cut in the y direction, slice_z1 & slice_z2 represent the coordinates of each cut in the z direction.
    background : Niimg-like object or string. Default is stuff.get_bg_ch2bet()
        The background image that the RSA results will be plotted on top of.
    type : string 'r' or 't'
        The type of result (r-values or t-values).
    """

    imgarray = nib.load(img).get_data()

    if (imgarray == np.nan).all() == True:

        print("No Valid Results")

    else:

        if threshold != None:
            imgarray = nib.load(img).get_data()
            affine = get_affine(img)
            imgarray = correct_by_threshold(imgarray, threshold)
            img = nib.Nifti1Image(imgarray, affine)

        slice_x = slice[0]
        slice_y = slice[1]
        slice_z = slice[2]

        if type == 'r':
            vmax = 1
        if type == 't':
            vmax = 7

        if slice_x != 0:
            plotting.plot_stat_map(stat_map_img=img, bg_img=background, display_mode='x', cut_coords=slice_x,
                                title="Similarity -sagittal", draw_cross=True, vmax=vmax)

        if slice_y != 0:
            plotting.plot_stat_map(stat_map_img=img, bg_img=background, display_mode='y', cut_coords=slice_y,
                                title="Similarity -coronal", draw_cross=True, vmax=vmax)

        if slice_z != 0:
            plotting.plot_stat_map(stat_map_img=img, bg_img=background, display_mode='z', cut_coords=slice_z,
                                title="Similarity -axial", draw_cross=True, vmax=vmax)

        plt.show()
コード例 #4
0
ファイル: nii_save.py プロジェクト: ZitongLu1996/NeuroRA
def stats_save_nii(stats, affine, filename=None, corr_mask=get_HOcort(), size=[60, 60, 60], ksize=[3, 3, 3],
                   strides=[1, 1, 1], p=0.05, correct_method=None, clusterp=0.05, smooth=False, plotrlt=True,
                   img_background=None):

    """
    Save the searchlight RSA statistical results as a NIfTI file for fMRI

    Parameters
    ----------
    stats : array
        The statistical results between behavioral data and fMRI data for searchlight.
        The shape of RDMs is [n_x, n_y, n_z, 2]. n_x, n_y, n_z represent the number of calculation units for searchlight
        along the x, y, z axis and 2 represents a t-value and a p-value.
        If the filename does not end in ".nii", it will be filled in automatically.
    affine : array or list
        The position information of the fMRI-image array data in a reference space.
    filename : string. Default is None - 'rsa_result.nii'.
        The file path+filename for the result .nii file.
    corr_mask : string
        The filename of a mask data for correcting the RSA result.
        It can just be one of your fMRI data files in your experiment for a mask file for ROI. If the corr_mask is a
        filename of a ROI mask file, only the RSA results in ROI will be visible.
    size : array or list [nx, ny, nz]. Default is [60, 60, 60].
        The size of the fMRI-img in your experiments.
    ksize : array or list [kx, ky, kz]. Default is [3, 3, 3].
        The size of the calculation unit for searchlight.
        kx, ky, kz represent the number of voxels along the x, y, z axis.
    strides : array or list [sx, sy, sz]. Default is [1, 1, 1].
        The strides for calculating along the x, y, z axis.
    p : float. Default is 0.05.
        The threshold of p-values.
        Only the results those p-values are lower than this value will be visible.
    correct_method : None or string 'FWE' or 'FDR' or 'Cluster-FWE' or 'Cluster-FDR'. Default is None.
        The method for correcting the RSA results.
        If correct_method='FWE', here the FWE-correction will be used. If correct_methd='FDR', here the FDR-correction
        will be used. If correct_method='Cluster-FWE', here the Cluster-wise FWE-correction will be used. If
        correct_methd='Cluster-FDR', here the Cluster-wise FDR-correction will be used. If correct_method=None, no
        correction.
        Only when p<1, correct_method works.
    clusterp : float. Default is 0.05.
        The threshold of p-value for cluster-wise correction.
        Only when correct_method='Cluster-FDR' or 'Cluster-FWE', clusterp works.
    smooth : bool True or False.  Default is False.
        Smooth the RSA result or not.
    plotrlt : bool True or False.  Default is True.
        Plot the RSA result automatically or not.
    img_background : None or string. Default if None.
        The filename of a background image that the RSA results will be plotted on the top of it.
        If img_background=None, the background will be ch2.nii.gz.
        Only when plotrlt=True, img_background works.

    Returns
    -------
    img : array
        The array of the statistical results t-values map.
        The shape is [nx, ny, nz]. nx, ny, nz represent the size of the fMRI-img.

    Notes
    -----
    A result .nii file of searchlight statistical results will be generated at the corresponding address of filename.
    """


    if len(np.shape(stats)) != 4 or len(np.shape(affine)) != 2 or np.shape(affine)[0] != 4 or np.shape(affine)[1] != 4:

        return "Invalid input!"

    # get the size of the fMRI-img
    nx = size[0]
    ny = size[1]
    nz = size[2]

    # the size of the calculation units for searchlight
    kx = ksize[0]
    ky = ksize[1]
    kz = ksize[2]

    rx = int((kx-1)/2)
    ry = int((ky-1)/2)
    rz = int((kz-1)/2)

    # strides for calculating along the x, y, z axis
    sx = strides[0]
    sy = strides[1]
    sz = strides[2]

    # calculate the number of the calculation units in the x, y, z directions
    n_x = np.shape(stats)[0]
    n_y = np.shape(stats)[1]
    n_z = np.shape(stats)[2]

    img_nii = np.zeros([nx, ny, nz], dtype=np.float64)

    # initialize a mask in order to record valid voxels (have qualified results)
    mask = np.zeros([nx, ny, nz], dtype=np.int)

    # get the p-values
    statsp = stats[:, :, :, 1]
    statst = stats[:, :, :, 0]

    # calculate the number of voxels for correction
    fadeimg = np.zeros([nx, ny, nz], dtype=np.int)

    # iterate through all the calculation units

    # calculate the indexs
    for i in range(n_x):
        for j in range(n_y):
            for k in range(n_z):

                x = i*sx
                y = j*sy
                z = k*sz

                if statsp[i, j, k] < 1:
                    img_nii[x + rx, y + ry, z + rz] = statst[i, j, k]
                if statsp[i, j, k] < p:
                    fadeimg[x + rx, y + ry, z + rz] = 1

    n_corrected = 0
    for i in range(nx):
        for j in range(ny):
            for k in range(nz):
                if fadeimg[i, j, k] == 1:
                    n_corrected = n_corrected + 1

    print(str(n_corrected)+" voxels will be corrected.")

    # do the correction
    if p < 1:

        # FDR-correction
        if correct_method == "FDR":
            statsp = fdr_correct(statsp, p_threshold=p)

        # FWE-correction
        if correct_method == "FWE":
            statsp = fwe_correct(statsp, p_threshold=p)

        # Cluster-wise FDR-correction
        if correct_method == "Cluster-FDR":
            statsp = cluster_fdr_correct(statsp, p_threshold1=p, p_threshold2=clusterp)

        # Cluster-wise FWE-correction
        if correct_method == "Cluster-FWE":
            statsp = cluster_fwe_correct(statsp, p_threshold1=p, p_threshold2=clusterp)

    # iterate through all the calculation units again

    print("Record the valid voxels.")

    for i in range(n_x):
        for j in range(n_y):
            for k in range(n_z):

                x = i * sx
                y = j * sy
                z = k * sz

                if statsp[i, j, k] < p:
                    mask[x + rx, y + ry, z + rz] = 1

    # initialize the newimg array to calculate the avg-r-value for each voxel
    newimg_nii = np.full([nx, ny, nz], np.nan)

    # set filename for result .nii file
    if filename == None:
        filename = "rsa_result.nii"
    else:
        q = ".nii" in filename

        if q == True:
            filename = filename
        else:
            filename = filename + ".nii"

    # corr_mask != None
    # use the mask file to correct RSA results
    # in order to avoid results showing outside of the brain
    if corr_mask == get_HOcort():

        mask_to(get_bg_ch2bet(), size, affine, filename)
        cmask = nib.load(filename).get_fdata()

    else:
        # load the array data of the mask file
        cmask = nib.load(corr_mask).get_fdata()

    # calculate the avg values of each valid voxel
    for i in range(nx):
        for j in range(ny):
            for k in range(nz):

                # valid voxel
                if (math.isnan(cmask[i, j, k]) == False) and cmask[i, j, k] != 0 and mask[i, j, k] == 1:
                    # sum-r-value/index
                    newimg_nii[i, j, k] = img_nii[i, j, k]

    print("Get RSA results.")

    print(filename)

    print("Save RSA results.")

    # save the .nii file for RSA results
    file = nib.Nifti1Image(newimg_nii, affine)


    if smooth == True:
        print("Smooth the results.")
        # smooth the img data of the .nii file
        file = smooth_img(file, fwhm='fast')

    # save the result
    nib.save(file, filename)

    # determine if it has results
    norlt = np.isnan(newimg_nii).all()
    if norlt == True:
        print("No RSA results.")

    print("File("+filename+") saves successfully!")

    # determine plot the results or not
    if norlt == False and plotrlt == True:

        print("Plot RSA results.")
        plot_brainrsa_rlts(filename, background=img_background, type='t')

    return newimg_nii