コード例 #1
0
ファイル: train_eval.py プロジェクト: xhjcxxl/ccf2020-
def train(config, model, train_iter, dev_iter):
    start_time = time.time()
    model.train()
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
    # optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=config.learning_rate,
                         warmup=0.05,
                         t_total=len(train_iter) * config.num_epochs)
    total_batch = 0  # 记录进行到多少batch
    # dev_best_loss = float('inf')
    dev_best_acc = -float('inf')
    last_improve = 0  # 记录上次验证集loss下降的batch数
    flag = False  # 记录是否很久没有效果提升
    model.train()
    for epoch in range(config.num_epochs):
        print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
        for i, batch in enumerate(train_iter):
            trains = (batch[0], batch[1], batch[2])
            labels = torch.squeeze(batch[3], dim=1)
            outputs = model(trains)

            model.zero_grad()
            class_weight = torch.FloatTensor([1, 1, 1, 1, 1, 1, 1, 0.4, 2, 1]).cuda()
            loss = F.cross_entropy(outputs, labels, weight=class_weight)
            # loss = F.cross_entropy(outputs, labels)
            loss.backward()
            optimizer.step()

            if total_batch % 100 == 0:
                # 每多少轮输出在训练集和验证集上的效果
                true = labels.data.cpu()
                predic = torch.max(outputs.data, 1)[1].cpu()
                train_acc = metrics.accuracy_score(true, predic)
                dev_acc, dev_loss, ouputs_all = evaluate(config, model, dev_iter)
                if dev_acc > dev_best_acc:
                    # dev_best_loss = dev_loss
                    dev_best_acc = dev_acc
                    torch.save(model.state_dict(), config.save_path)
                    improve = '*'
                    last_improve = total_batch
                else:
                    improve = ''
                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6},  Train Loss: {1:>5.2},  Train Acc: {2:>6.2%},  Val Loss: {3:>5.2},  Val Acc: {4:>6.2%},  Time: {5} {6}'
                print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve))
                model.train()
            total_batch += 1
            if total_batch - last_improve > config.require_improvement:
                # 验证集loss超过1000batch没下降,结束训练
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break
        if flag:
            break
コード例 #2
0
ファイル: train_eval.py プロジェクト: xhjcxxl/ccf2020-
def label_test(config, model, test_iter):
    # test
    model.load_state_dict(torch.load(config.save_path))
    model.eval()
    start_time = time.time()
    test_acc, test_loss, test_report, test_confusion, _ = evaluate(config,
                                                                   model,
                                                                   test_iter,
                                                                   test=True)
    msg = 'Test Loss: {0:>5.2},  Test Acc: {1:>6.2%}'
    print(msg.format(test_loss, test_acc))
    print("Precision, Recall and F1-Score...")
    print(test_report)
    print("Confusion Matrix...")
    print(test_confusion)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)
コード例 #3
0
ファイル: predict.py プロジェクト: xhjcxxl/ccf2020-
    seed = config.seed
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True  # 保证每次结果一样

    config.test_path = dataset + '/unlabeled_data.csv'
    start_time = time.time()
    data_df = load_data(config.test_path, config, with_label=False)

    print('Reading testing data...')
    test_data = Mydataset(config=config, data=data_df, with_labels=False)
    test_iter = DataLoader(dataset=test_data,
                           batch_size=config.batch_size,
                           shuffle=False)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)

    model = bert_RNN(config).to(config.device)
    predict_all = test(config, model, test_iter)

    # ---------------------生成文件--------------------------
    df_test = pd.read_csv(config.submit_example_path, encoding='utf-8')
    id2label, label2id = json.load(open(config.id2label_path))
    id2label = {int(i): j for i, j in id2label.items()}  # 转为int型(原本是字符串形式)
    class_labels = []
    rank_labels = []
    for i in predict_all:
        label = str(id2label[i])
        class_labels.append(label)
        if label in ['财经', '时政']: