コード例 #1
0
ファイル: O_dimer.py プロジェクト: zenandrea/qmcpack
        dimer=('O', 'O'),
        separation=1.2074 * scale,
        Lbox=10.0,  # use 15.0 or so for production
        units='A',
        net_spin=2,
        O=6,
    )

    # describe DFT run
    dft = generate_pwscf(
        identifier='dft',
        path=directory,
        job=dftjob,
        system=dimer,
        input_type='scf',
        pseudos=['O.BFD.upf'],
        input_dft='lda',
        ecut=300,
        conv_thr=1e-7,
        mixing_beta=.7,
        nosym=True,
        wf_collect=True,
    )
    sims.append(dft)

    # describe orbital conversion run
    p2q = generate_pw2qmcpack(
        identifier='p2q',
        path=directory,
        job=p2qjob,
        write_psir=False,
        dependencies=(dft, 'orbitals'),
コード例 #2
0
ファイル: workflows.py プロジェクト: kayahans/li-batteries
def mworkflow(shared_qe, params, sims):

    for i in params_defaults.keys():
        if i not in params:
            setattr(params, i, params_defaults[i])
        #end if
    #end if
    if params.j3:
        if params.code == 'gpu':
            print "GPU code and j3 not possible yet"
            exit()
        #end if
    #end if
    if params.excitation is not None:
        params.twistnum = 0
    ########################
    #DMC and VMC parameters#
    ########################
    samples = 25600  #25600
    vmcblocks = 100
    dmcblocks = 300
    dmceqblocks = 200
    dmcwalkers = 1024  # For cades it is multiplied by 2
    vmcdt = 0.3
    if params.vmc:
        vmcblocks = 9000
        vmcdt = 0.3
        dmcblocks = 1
        dmceqblocks = 1
    #end if
    #############################
    # Machine specific variables#
    #############################
    if params.machine == 'cades':
        minnodes = 1
        scf_nodes = 2
        scf_hours = 48
        p2q_nodes = scf_nodes
        p2q_hours = 1

        qeapp = 'pw.x -npool 4 '
        if params.dft_grid == (1, 1, 1):
            scf_nodes = 1
            qeapp = 'pw.x'
        #end if
        qe_presub = 'module purge; module load PE-intel/3.0; module load hdf5_parallel/1.10.3'

        opt_nodes = 4
        opt_hours = 12
        dmcnodespertwist = 0.5
        dmc_hours = 24
        qmc_threads = 18
        walkers = qmc_threads
        blocks = samples / (walkers * opt_nodes)
        params.code = 'cpu'
        qmcapp = ' qmcpack_cades_cpu_comp_SoA'
        qmc_presub = 'module purge; module load PE-intel'

        opt_job = Job(nodes=opt_nodes,
                      hours=opt_hours,
                      threads=qmc_threads,
                      app=qmcapp,
                      presub=qmc_presub)

    elif params.machine == 'titan' or params.machine == 'eos':
        minnodes = 1
        dmcwalkers *= 2
        scf_nodes = 8
        scf_hours = 2
        p2q_nodes = scf_nodes
        p2q_hours = 1

        qeapp = 'pw.x -npool 4 '
        qe_presub = ''

        if params.machine == 'eos':
            opt_nodes = 16
            opt_hours = 2
            qmc_threads = 16
            walkers = qmc_threads
            blocks = samples / (walkers * opt_nodes)

            params.code = 'cpu'
            qmcapp = '/ccs/home/kayahan/SOFTWARE/qmcpack/eos/qmcpack/qmcpack_eos_cpu_comp_SoA'
            qmc_presub = ''

            params.rundmc = False
        elif params.machine == 'titan':
            if params.code == 'cpu':
                dmcwalkers *= 2
                vmcblocks = 50
                opt_nodes = 16
                opt_hours = 2
                dmcnodespertwist = 32
                dmc_hours = 6
                qmc_threads = 16
                walkers = qmc_threads
                blocks = samples / (walkers * opt_nodes)

                qmcapp = '/ccs/home/kayahan/SOFTWARE/qmcpack/titan/qmcpack/qmcpack_titan_cpu_comp_SoA'
                qmc_presub = ''

                params.rundmc = True
            elif params.code == 'gpu':
                dmcwalkers *= 8
                opt_nodes = 4
                opt_hours = 4
                dmcnodespertwist = 8
                dmc_hours = 1.5
                qmc_threads = 16
                walkers = qmc_threads
                blocks = samples / (walkers * opt_nodes)
                qmcapp = '/ccs/home/kayahan/SOFTWARE/qmcpack/titan/qmcpack/qmcpack_titan_gpu_comp_SoA'
                qmc_presub = 'module load cudatoolkit'
            #end if
        #end if

        opt_job = Job(nodes=opt_nodes,
                      hours=opt_hours,
                      threads=qmc_threads,
                      app=qmcapp,
                      presub=qmc_presub)

    elif params.machine == 'cetus' or params.machine == 'mira':
        if params.machine == 'cetus':
            minnodes = 128
            opt_hours = 1
            dmc_hours = 1
        elif params.machine == 'mira':
            minnodes = 128
            dmc_hours = 1
            dmc_hours = 1
        #end if

        scf_nodes = 128
        scf_hours = 1
        p2q_nodes = 128
        p2q_hours = 1

        qeapp = 'pw.x'
        qe_presub = ''

        opt_nodes = 128.0
        opt_nodes = np.round(opt_nodes / minnodes) * minnodes
        dmcnodespertwist = 18
        qmc_threads = 16
        walkers = qmc_threads
        qmc_processes_per_node = 16
        blocks = samples / (walkers * opt_nodes)
        params.code = 'cpu'
        qmcapp = 'qmcpack'
        qmc_presub = ''
        opt_job = Job(nodes=opt_nodes,
                      hours=opt_hours,
                      threads=qmc_threads,
                      processes_per_node=qmc_processes_per_node,
                      app=qmcapp,
                      presub=qmc_presub)
    elif params.machine == 'summit':
        dmcwalkers *= 8
        minnodes = 1
        scf_nodes = 2
        scf_hours = 24
        p2q_nodes = 2
        p2q_hours = 1

        qeapp = 'pw.x -npool 4 '
        if params.dft_grid == (1, 1, 1):
            scf_nodes = 1
            qeapp = 'pw.x'
    #end if
        qe_presub = 'module purge; module load PE-intel/3.0'
        opt_nodes = 4
        opt_hours = 4
        dmcnodespertwist = 8
        dmc_hours = 6
        qmc_threads = 42
        walkers = qmc_threads
        blocks = samples / (walkers * opt_nodes)
        qmcapp = '/ccs/home/kayahan/SOFTWARE/qmcpack/summit/qmcpack/build_summit_comp/bin/qmcpack'
    else:
        print "Machine is not defined!"
        exit()
    #end if

    scf_job = Job(nodes=scf_nodes,
                  hours=scf_hours,
                  app=qeapp,
                  presub=qe_presub)
    p2q_job = Job(nodes=p2q_nodes,
                  hours=p2q_hours,
                  app='pw2qmcpack.x -npool 4 ',
                  presub=qe_presub)

    if params.big or params.qp:
        dmcblocks *= 4
        dmcnodespertwist *= 1
        dmc_hours *= 2
        dmcwalkers *= 2
    #end if
    shared_qe.wf_collect = False
    shared_qe.nosym = True
    shared_qe.job = scf_job
    shared_qe.pseudos = params.dft_pps
    if params.tot_mag is not None:
        shared_qe.tot_magnetization = params.tot_mag
    #end if
    if params.two_u:
        ulist = [params.ulist[0]]
    else:
        ulist = params.ulist
    #end if
    shared_relax = shared_qe.copy()

    # qmcs list to possibly bundle all DMC calculations
    qmcs = []
    scf_ks_energy = 0
    for u in ulist:
        if u != 0.:
            shared_qe.hubbard_u = obj()
            shared_relax.hubbard_u = obj()
            for inum, i in enumerate(params.uatoms):
                if params.two_u:
                    setattr(shared_qe.hubbard_u, i, params.ulist[inum])
                else:
                    setattr(shared_qe.hubbard_u, i, u)
                    setattr(shared_relax.hubbard_u, i, params.relax_u)
                    #end if
            #end for
        #end if
        scf_inf = None
        scf_path = './scf-u-' + str(u) + '-inf'
        if params.relax:
            shared_relax = shared_qe.copy()
            shared_relax['ion_dynamics'] = 'bfgs'
            shared_relax['cell_dynamics'] = 'bfgs'
            shared_relax['calculation'] = 'vc-relax'
            shared_relax['conv_thr'] = 10e-6
            shared_relax['forc_conv_thr'] = 0.001
            shared_relax['input_DFT'] = params.relax_functional
            shared_relax.nosym = True
            coarse_relax = generate_pwscf(
                identifier='scf',
                path='./coarse_relax-u-' + str(params.relax_u) + '-inf',
                electron_maxstep=params.electron_maxstep,
                nogamma=True,
                system=params.system,
                kgrid=params.dft_grid,
                **shared_relax)
            sims.append(coarse_relax)

            shared_relax['conv_thr'] = 10e-8
            shared_relax['forc_conv_thr'] = 0.001
            fine_relax = generate_pwscf(
                identifier='scf',
                path='./fine_relax-u-' + str(params.relax_u) + '-inf',
                electron_maxstep=params.electron_maxstep,
                nogamma=True,
                system=params.system,
                kgrid=params.dft_grid,
                dependencies=(coarse_relax, 'structure'),
                **shared_relax)
            sims.append(fine_relax)

            scf_inf = generate_pwscf(
                identifier='scf',
                path=scf_path,
                electron_maxstep=params.electron_maxstep,
                nogamma=True,
                system=params.system,
                #nosym = True,
                kgrid=params.dft_grid,
                calculation='scf',
                dependencies=(fine_relax, 'structure'),
                **shared_qe)
            #pdb.set_trace()

        else:
            scf_inf = generate_pwscf(
                identifier='scf',
                path=scf_path,
                electron_maxstep=params.electron_maxstep,
                nogamma=True,
                system=params.system,
                #nosym = True,
                kgrid=params.dft_grid,
                calculation='scf',
                **shared_qe)

        sims.append(scf_inf)

        if params.nscf_only is True:
            params.tilings = []
            params.vmc_opt = False
            params.qmc = False

        if params.print_ke_corr:
            scf_dir = scf_inf.remdir
            pwscf_output = scf_inf.input.control.outdir
            datafile_xml = scf_dir + '/' + pwscf_output + '/pwscf.save/data-file-schema.xml'
            if os.path.isfile(datafile_xml):
                xmltree = minidom.parse(datafile_xml)
                ks_energies = xmltree.getElementsByTagName("ks_energies")
                eig_tot = 0
                for kpt in ks_energies:
                    w = float(
                        kpt.getElementsByTagName('k_point')[0].getAttribute(
                            'weight'))
                    eigs = np.array(kpt.getElementsByTagName('eigenvalues')
                                    [0].firstChild.nodeValue.split(' '),
                                    dtype='f')
                    occs = np.array(
                        kpt.getElementsByTagName(
                            'occupations')[0].firstChild.nodeValue.split(' '),
                        dtype='f')  #Non-integer occupations from DFT
                    eig_tot += w * sum(
                        eigs * occs) / 2  #Divide by two for both spins
                #end for
                print scf_dir, "e_tot eigenvalues in Ha ", eig_tot / 2
                if scf_ks_energy == 0:
                    scf_ks_energy = eig_tot / 2
            #end if
        #end if
        for tl_num, tl in enumerate(params.tilings):
            for k in params.qmc_grids:
                knum = k[1] * k[2] * k[0]
                if params.relax:
                    relax = fine_relax  #prim = scf_inf.load_analyzer_image().input_structure.copy()
                    print 'Make sure the previous run is loaded to results!'
                    #scf_inf.system.structure
                else:
                    relax = scf_inf
                    prim = params.system.structure.copy()
                    #system = params.system
                prim.clear_kpoints()
                super = prim.tile(tl)

                tl_np = np.array(tl)
                tl_det = int(np.abs(np.linalg.det(tl_np)) + 0.001)

                if params.natoms is not None:
                    natoms = tl_det * params.natoms
                else:
                    natoms = len(super.elem)
                #end if
                if params.rcut:
                    rcut = params.rcut[tl_num]
                else:
                    rcut = super.rwigner() - 0.00001
                #end if
                if params.tot_mag is not None and params.qp is False:
                    system = generate_physical_system(
                        structure=prim,
                        tiling=tl,
                        kgrid=k,
                        kshift=params.kshift,  #(0, 0, 0),
                        net_charge=params.charge,
                        net_spin=params.tot_mag,
                        use_prim=False,
                        **params.system.valency)
                elif params.qp is False:
                    system = generate_physical_system(
                        structure=prim,
                        tiling=tl,
                        kgrid=k,
                        shift=params.kshift,  #(0, 0, 0),
                        net_charge=params.charge,
                        **params.system.valency)
                else:
                    system = generate_physical_system(
                        structure=prim,
                        tiling=tl,
                        kgrid=k,
                        kshift=params.kshift,  #(0, 0, 0),
                        use_prim=False,
                        **params.system.valency)
                #end if
                # DFT NSCF To Generate Wave Function At Specified K-points

                if params.dft_grid == params.qmc_grids[0] and len(
                        params.qmc_grids) == 1:
                    params.nscf_skip = True

                if not params.nscf_skip:
                    if params.relax:
                        nscf_dep = [(scf_inf, 'charge_density'),
                                    (relax, 'structure')]
                    else:
                        nscf_dep = [(scf_inf, 'charge_density')]
                    #end if
                    nscf_path = './nscf-u-' + str(u) + '-' + str(
                        knum) + '-' + str(natoms)
                    p2q_path = nscf_path
                    nscf = generate_pwscf(
                        identifier='nscf',
                        path=nscf_path,
                        system=system,
                        #nosym = True,
                        nogamma=True,
                        dependencies=nscf_dep,
                        calculation='nscf',
                        **shared_qe)
                    sims.append(nscf)

                    if params.relax:
                        p2q_dep = [(nscf, 'orbitals'), (relax, 'structure')]
                    else:
                        p2q_dep = [(nscf, 'orbitals')]
                    #end if
                else:
                    p2q_path = scf_path
                    if params.relax:
                        p2q_dep = [(scf_inf, 'orbitals'), (relax, 'structure')]
                    else:
                        p2q_dep = [(scf_inf, 'orbitals')]
                    #end if
                #end if
                # Convert DFT Wavefunction Into HDF5 File For QMCPACK
                p2q = generate_pw2qmcpack(
                    identifier='p2q',
                    path=p2q_path,
                    job=p2q_job,
                    write_psir=False,
                    dependencies=p2q_dep,
                )
                sims.append(p2q)

                if params.print_ke_corr and not params.nscf_skip:
                    import h5py
                    nscf_dir = nscf.remdir
                    pwscf_output = nscf.input.control.outdir
                    h5_file = nscf_dir + '/' + pwscf_output + '/pwscf.pwscf.h5'
                    #Assume equal weight for all k-points
                    eig_tot = 0
                    nkpts = 0
                    if os.path.isfile(h5_file):
                        f = h5py.File(h5_file, 'r+')
                        nelect = f['electrons']['number_of_electrons'][:]

                        for group_e in f['electrons'].keys():
                            if group_e.startswith('kpoint'):
                                nkpts += 1
                                f_temp = f['electrons'][group_e]
                                for group_k in f_temp.keys():
                                    k_s_eig = [0]
                                    w = 0
                                    if group_k.startswith('spin_0'):
                                        k_s_eig = f_temp[group_k][
                                            'eigenvalues'][:]
                                        k_s_eig = k_s_eig[0:nelect[
                                            0]]  #fixed occupations from the number of electrons
                                        w = f_temp['weight'][0]
                                    elif group_k.startswith('spin_1'):
                                        k_s_eig = f_temp[group_k][
                                            'eigenvalues'][:]
                                        k_s_eig = k_s_eig[0:nelect[1]]
                                        w = f_temp['weight'][0]
                                        #pdb.set_trace()
                                    #end if
                                    eig_tot += sum(k_s_eig) * w / 2
                                #end for
                            #end if
                        #end fof
                        print nscf_dir, "e_tot eigenvalues in Ha", eig_tot / 2 - scf_ks_energy, "wigner " + str(
                            system['structure'].rwigner())
                    #end if
                #end if

                # DFT is complete, rest is QMC

                # change here for other AFM atoms
                system.rename(Co1='Co', Co2='Co', Co3='Co', folded=False)
                system.rename(Ni1='Ni', Ni2='Ni', Ni3='Ni', folded=False)

                # VMC Optimization
                linopt1 = linear(
                    energy=0.0,  # 0.95
                    unreweightedvariance=1.0,
                    reweightedvariance=0.0,  # 0.05
                    timestep=0.3,
                    samples=samples,
                    walkers=walkers,
                    warmupsteps=10,
                    blocks=blocks,
                    steps=1,
                    substeps=10,
                    maxweight=1e9,
                    gpu=True,
                    minmethod='OneShiftOnly',
                    minwalkers=0.01,
                    usebuffer=True,
                    exp0=-6,
                    bigchange=10.0,
                    alloweddifference=1e-04,
                    stepsize=0.15,
                    nstabilizers=1,
                )

                # Quasiparticle calculation
                if params.qp:
                    etot = system.particles.down_electron.count + system.particles.up_electron.count
                    upe = (etot + params.tot_mag * tl_det) / 2 - params.charge
                    downe = etot - params.charge - upe
                    system.particles.down_electron.count = downe
                    system.particles.up_electron.count = upe
                #end if

                # 1. VMC optimization is requested
                # 2. VMC optimization is done on the first element uf ulist
                # 3. VMC optimization is done on the first element of qmc_grids

                if params.vmc_opt and u == params.ulist[
                        0] and k == params.qmc_grids[0]:

                    # VMC Variance minimization

                    opt_varmin = generate_qmcpack(
                        identifier='opt-varmin',
                        path='./opt-u-' + str(u) + '-' + str(natoms) +
                        '-varmin-' + str(params.j),
                        job=opt_job,
                        input_type='basic',
                        system=system,
                        spin_polarized=True,  # jtk: needs this
                        meshfactor=1.0,
                        hybrid_rcut=params.hybrid_rcut,
                        hybrid_lmax=params.hybrid_lmax,
                        #spline_radius  = params.spline_radius,
                        twistnum=params.twistnum,
                        #bconds         = 'ppp',
                        pseudos=params.qmc_pps,
                        jastrows=[('J1', 'bspline', params.j, rcut),
                                  ('J2', 'bspline', params.j, rcut, 'init',
                                   'zero')],
                        calculations=[
                            loop(max=6, qmc=linopt1),
                            loop(max=6, qmc=linopt1)
                        ],
                        dependencies=(p2q, 'orbitals'))
                    sims.append(opt_varmin)

                    # QMC Optimization Parameters - Finer Sampling Set -- Energy Minimization
                    linopt2 = linopt1.copy()
                    linopt2.minwalkers = 0.5
                    linopt2.energy = 0.95
                    linopt2.unreweightedvariance = 0.0
                    linopt2.reweightedvariance = 0.05
                    linopt3 = linopt2.copy()
                    linopt3.minwalkers = 0.5
                    ##
                    emin_dep = []

                    # Use preliminary optimization step made of two steps
                    if not params.nopre:
                        preopt_emin = generate_qmcpack(
                            identifier='opt-emin',
                            path='./preopt-u-' + str(u) + '-' + str(natoms) +
                            '-emin-' + str(params.j),
                            job=opt_job,
                            input_type='basic',
                            system=system,
                            spin_polarized=True,  # jtk: needs this
                            meshfactor=params.meshfactor,
                            hybrid_rcut=params.hybrid_rcut,
                            hybrid_lmax=params.hybrid_lmax,
                            #spline_radius  = params.spline_radius,
                            twistnum=params.twistnum,
                            #bconds         = 'ppp',
                            pseudos=params.qmc_pps,
                            jastrows=[],
                            calculations=[loop(max=2, qmc=linopt2)],
                            dependencies=[(p2q, 'orbitals'),
                                          (opt_varmin, 'jastrow')])
                        sims.append(preopt_emin)
                        emin_dep = preopt_emin
                    else:
                        emin_dep = opt_varmin
                    #end if

                    opt_emin = generate_qmcpack(
                        identifier='opt-emin',
                        path='./opt-u-' + str(u) + '-' + str(natoms) +
                        '-emin-' + str(params.j),
                        job=opt_job,
                        input_type='basic',
                        system=system,
                        spin_polarized=True,  # jtk: needs this
                        meshfactor=params.meshfactor,
                        hybrid_rcut=params.hybrid_rcut,
                        hybrid_lmax=params.hybrid_lmax,
                        #spline_radius  = params.spline_radius,
                        twistnum=params.twistnum,
                        #bconds         = 'ppp',
                        pseudos=params.qmc_pps,
                        jastrows=[],
                        calculations=[
                            loop(max=4, qmc=linopt2),
                            loop(max=4, qmc=linopt3)
                        ],
                        dependencies=[(p2q, 'orbitals'),
                                      (emin_dep, 'jastrow')])
                    sims.append(opt_emin)

                    # 3-body jastrows

                    if params.j3:
                        j3_dep = []
                        linopt2.walkers = 16
                        linopt2.blocks = linopt2.blocks * 2
                        linopt2.samples = linopt1.samples * 2

                        j3_rcut = min(system['structure'].rwigner() - 0.0001,
                                      4.0)
                        if not params.nopre:
                            preopt_emin_J3 = generate_qmcpack(
                                identifier='opt-emin-J3',
                                path='./preopt-u-' + str(u) + '-' +
                                str(natoms) + '-emin-J3-' + str(params.j),
                                job=opt_job,
                                input_type='basic',
                                system=system,
                                spin_polarized=True,  # jtk: needs this
                                meshfactor=params.meshfactor,
                                hybrid_rcut=params.hybrid_rcut,
                                hybrid_lmax=params.hybrid_lmax,
                                #spline_radius  = params.spline_radius,
                                twistnum=params.twistnum,
                                #bconds         = 'ppp',
                                pseudos=params.qmc_pps,
                                jastrows=[('J3', 'polynomial', 3, 3, j3_rcut)],
                                calculations=[loop(max=2, qmc=linopt2)],
                                dependencies=[(p2q, 'orbitals'),
                                              (opt_emin, 'jastrow')])
                            sims.append(preopt_emin_J3)
                            j3_dep = preopt_emin_J3
                        else:
                            j3_dep = opt_emin
                        #end if

                        opt_emin_J3 = generate_qmcpack(
                            identifier='opt-emin-J3',
                            path='./opt-u-' + str(u) + '-' + str(natoms) +
                            '-emin-J3-' + str(params.j),
                            job=opt_job,
                            input_type='basic',
                            system=system,
                            spin_polarized=True,  # jtk: needs this
                            meshfactor=params.meshfactor,
                            hybrid_rcut=params.hybrid_rcut,
                            hybrid_lmax=params.hybrid_lmax,
                            #spline_radius  = params.spline_radius,
                            twistnum=params.twistnum,
                            #bconds         = 'ppp',
                            pseudos=params.qmc_pps,
                            jastrows=[('J3', 'polynomial', 3, 3, j3_rcut)],
                            calculations=[
                                loop(max=4, qmc=linopt2),
                                loop(max=4, qmc=linopt2)
                            ],
                            dependencies=[(p2q, 'orbitals'),
                                          (j3_dep, 'jastrow')])
                        sims.append(opt_emin_J3)
                    #end if
                #end if

                # VMC is complete, run DMC

                dmc_nodes = np.round(
                    np.ceil(knum * dmcnodespertwist) / minnodes) * minnodes
                dmc_job = Job(nodes=int(dmc_nodes),
                              hours=dmc_hours,
                              threads=qmc_threads,
                              app=qmcapp,
                              presub=qmc_presub)

                # Add any future estimators here
                from qmcpack_input import spindensity, skall, density
                if params.density is not None:
                    est = [spindensity(grid=params.density)]
                else:
                    est = None
                #end if

                #Initial VMC calculation to generate walkers for DMC
                calculations = [
                    vmc(
                        warmupsteps=25,
                        blocks=vmcblocks,
                        steps=1,
                        stepsbetweensamples=1,
                        walkers=walkers,
                        timestep=vmcdt,
                        substeps=4,
                        samplesperthread=int(dmcwalkers /
                                             (dmcnodespertwist * walkers)),
                    ),
                    #                                                dmc(
                    #                                                        warmupsteps =0,
                    #                                                        blocks      =dmceqblocks/4,
                    #                                                        steps       =5,
                    #                                                        timestep    =0.04,
                    #                                                        nonlocalmoves=params.tmoves,
                    #                                                        ),
                    #                                                dmc(
                    #                                                        warmupsteps =0,
                    #                                                        blocks      =dmceqblocks/4,
                    #                                                        steps       =5,
                    #                                                        timestep    =0.02,
                    #                                                        nonlocalmoves=params.tmoves,
                    #                                                        ),
                ]
                # Scan over timesteps
                if params.timesteps is None:
                    params.timesteps = [0.01]
                #end if
                for t in params.timesteps:
                    calculations.append(
                        dmc(
                            warmupsteps=dmceqblocks / 2,
                            blocks=int(dmcblocks / (np.sqrt(t) * 10)),
                            steps=10,
                            timestep=t,
                            nonlocalmoves=params.tmoves,
                        ))
                #end for

                # Prepanding name for the path
                pathpre = 'dmc'
                if params.vmc:
                    pathpre = 'vmc'
                #end if

                deps = [(p2q, 'orbitals')]

                has_jastrow = False
                # 3-body jastrow calculation with VMC or DMC
                if params.j3:
                    has_jastrow = True
                    # add j3 dependenciies
                    if params.vmc_opt:
                        deps.append((opt_emin_J3, 'jastrow'))
                    #end if

                    if params.tmoves:
                        path = './' + pathpre + '-j3-tm-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    else:
                        path = './' + pathpre + '-j3-nl-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    #end if
                #end if
                # 2-body jastrow calculation with VMC or DMC
                if params.j2:
                    has_jastrow = True
                    #add j2 dependencies
                    if params.vmc_opt:
                        deps.append((opt_emin, 'jastrow'))
                    #end if
                    if params.tmoves:
                        path = './' + pathpre + '-j2-tm-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    else:
                        path = './' + pathpre + '-j2-nl-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    #end if
                #end if
                # No jastrow calculation with VMC or DMC
                if not has_jastrow:
                    if params.tmoves:
                        path = './' + pathpre + '-j0-tm-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    else:
                        path = './' + pathpre + '-j0-nl-u-' + str(
                            u) + '-' + str(knum) + '-' + str(natoms)
                    #end if
                #end if

                det_format = 'new'
                # Optical excitation
                if params.excitation is not None:
                    path += '_' + params.excitation[
                        0] + '_' + params.excitation[1].replace(" ", "_")
                    det_format = 'old'
                #end if
                # Charged cell
                if params.charge != 0:
                    path += '_' + str(params.charge)
                #end if

                if params.qmc:
                    qmc = generate_qmcpack(seed=params.seed,
                                           skip_submit=params.qmc_skip_submit,
                                           det_format=det_format,
                                           identifier=pathpre,
                                           path=path,
                                           job=dmc_job,
                                           input_type='basic',
                                           system=system,
                                           estimators=est,
                                           meshfactor=params.meshfactor,
                                           hybrid_rcut=params.hybrid_rcut,
                                           hybrid_lmax=params.hybrid_lmax,
                                           excitation=params.excitation,
                                           pseudos=params.qmc_pps,
                                           jastrows=[],
                                           spin_polarized=True,
                                           calculations=calculations,
                                           dependencies=deps)
                    qmcs.append(qmc)
                #end if
            #end if
        #end for
    #end for
    if params.bundle:
        from bundle import bundle
        qmcb = bundle(qmcs)
        sims.append(qmcb)
    else:
        sims = sims + qmcs
        return sims
コード例 #3
0
                                      net_spin=0,
                                      Be=2,
                                      tiling=[[a, b, c], [d, e, f], [g, h, i]],
                                      kgrid=kgrid,
                                      kshift=(.5, .5, .5))

    # scf run to generate converged charge density
    if first:
        scf = generate_pwscf(identifier='scf',
                             path=directory + '/scf',
                             job=dft_job,
                             input_type='scf',
                             system=bcc_Be,
                             spin_polarized=False,
                             pseudos=dft_pps,
                             input_dft='lda',
                             ecut=200,
                             conv_thr=1e-8,
                             mixing_beta=.7,
                             nosym=False,
                             wf_collect=False,
                             kgrid=(8, 8, 8),
                             kshift=(0, 0, 0))
        sims.append(scf)
    #end if

    # nscf run to generate orbitals
    nscf = generate_pwscf(identifier='nscf',
                          path=directory + '/nscf_' + ks,
                          job=dft_job,
                          input_type='nscf',
コード例 #4
0
ファイル: example.py プロジェクト: zty0510/qmcpack
    C=4  # one line like this for each atomic species
)

my_bconds = 'ppp'  #  ppp/nnn for periodic/open BC's in QMC
#  if nnn, center atoms about (a1+a2+a3)/2

sims = []

# scf run to generate orbitals
scf = generate_pwscf(
    identifier='scf',
    path=my_project_name,
    job=dftjob,
    input_type='scf',
    system=my_system,
    pseudos=my_dft_pps,
    input_dft='lda',
    ecut=200,  # PW energy cutoff in Ry
    conv_thr=1e-8,
    mixing_beta=.7,
    nosym=True,
    wf_collect=True)
sims.append(scf)

# conversion step to create h5 file with orbitals
p2q = generate_pw2qmcpack(identifier='p2q',
                          path=my_project_name,
                          job=p2qjob,
                          write_psir=False,
                          dependencies=(scf, 'orbitals'))
sims.append(p2q)
コード例 #5
0
ファイル: graphene.py プロジェクト: Paul-St-Young/myNexus

# list of simulations in workflow
sims = []

# scf run produces charge density
scf = generate_pwscf(
    # nexus inputs
    identifier   = 'scf',           # identifier/file prefix
    path         = 'graphene/scf',  # directory for scf run
    job          = Job(cores=16),   # run on 16 cores
    pseudos      = ['C.BFD.upf'],   # pwscf PP file
    system       = graphene,        # run graphene
    # input format selector
    input_type   = 'scf',           # scf, nscf, relax, or generic
    # pwscf input parameters
    input_dft    = 'lda',           # dft functional
    ecut         =  150 ,           # planewave energy cutoff (Ry)
    conv_thr     =  1e-6,           # scf convergence threshold (Ry)
    mixing_beta  =    .7,           # charge mixing factor
    kgrid        = (8,8,8),         # MP grid of primitive cell
    kshift       = (1,1,1),         #  to converge charge density
    wf_collect   = False,           # don't collect orbitals
    use_folded   = True             # use primitive rep of graphene
    )
sims.append(scf)  

# nscf run to produce orbitals for jastrow optimization
nscf_opt = generate_pwscf(
    # nexus inputs
    identifier   = 'nscf',          # identifier/file prefix      
コード例 #6
0
               C  0.0000  0.0000  0.0000
               C  0.8925  0.8925  0.8925
               ''',
    tiling=[[1, -1, 1], [1, 1, -1], [-1, 1, 1]],
    kgrid=(1, 1, 1),
    kshift=(0, 0, 0),
    C=4,
)

scf = generate_pwscf(
    identifier='scf',
    path='diamond/scf',
    job=job(cores=16, app='pw.x'),
    input_type='generic',
    calculation='scf',
    input_dft='lda',
    ecutwfc=200,
    conv_thr=1e-8,
    system=system,
    pseudos=['C.BFD.upf'],
    kgrid=(4, 4, 4),
    kshift=(0, 0, 0),
)

nscf = generate_pwscf(
    identifier='nscf',
    path='diamond/nscf',
    job=job(cores=16, app='pw.x'),
    input_type='generic',
    calculation='nscf',
    input_dft='lda',
    ecutwfc=200,
コード例 #7
0
ファイル: graphene.py プロジェクト: zenandrea/qmcpack
    kgrid     = (1,1,1),          # Monkhorst-Pack grid
    kshift    = (.5,.5,.5),       # and shift
    C         = 4                 # C has 4 valence electrons
    ) 

# scf run produces charge density
scf = generate_pwscf(
    # nexus inputs
    identifier   = 'scf',           # identifier/file prefix
    path         = 'graphene/scf',  # directory for scf run
    job          = job(cores=16),   # run on 16 cores
    pseudos      = ['C.BFD.upf'],   # pwscf PP file
    system       = graphene,        # run graphene
    # input format selector
    input_type   = 'scf',           # scf, nscf, relax, or generic
    # pwscf input parameters
    input_dft    = 'lda',           # dft functional
    ecut         =  150 ,           # planewave energy cutoff (Ry)
    conv_thr     =  1e-6,           # scf convergence threshold (Ry)
    mixing_beta  =    .7,           # charge mixing factor
    kgrid        = (8,8,8),         # MP grid of primitive cell
    kshift       = (1,1,1),         #  to converge charge density
    wf_collect   = False,           # don't collect orbitals
    use_folded   = True,            # use primitive rep of graphene
    )

# nscf run to produce orbitals for jastrow optimization
nscf_opt = generate_pwscf(
    # nexus inputs
    identifier   = 'nscf',          # identifier/file prefix      
    path         = 'graphene/nscf_opt', # directory for nscf run       
コード例 #8
0
ファイル: c20.py プロジェクト: Paul-St-Young/myNexus
    ) 


# list of simulations in workflow
sims = []

# scf run produces charge density
scf = generate_pwscf(
    # nexus inputs
    identifier   = 'scf',           # identifier/file prefix
    path         = 'c20/scf',       # directory for scf run
    job          = Job(cores=16),   # run on 16 cores
    pseudos      = ['C.BFD.upf'],   # pwscf PP file
    system       = c20,             # run c20
    # input format selector
    input_type   = 'scf',           # scf, nscf, relax, or generic
    # pwscf input parameters
    input_dft    = 'lda',           # dft functional
    ecut         =  150 ,           # planewave energy cutoff (Ry)
    conv_thr     =  1e-6,           # scf convergence threshold (Ry)
    mixing_beta  =    .7,           # charge mixing factor
    nosym        = True,            # don't use symmetry
    wf_collect   = True,            # write out orbitals
    )
sims.append(scf)  

# orbital conversion job for opt and dmc
p2q = generate_pw2qmcpack(
    # nexus inputs
    identifier   = 'p2q',
    path         = 'c20/nscf',
コード例 #9
0
    net_charge      = 0,
    net_spin        = 0,
    O               = 6,
    H               = 1,
    )

sims = []

# DFT SCF To Generate Converged Density
scf = generate_pwscf(
    identifier      = 'scf',
    path            = '.',
    job             = scf_job,
    input_type      = 'scf',
    system          = H2O_molecule,
    pseudos         = dft_pps,
    ecut            = 50,
    ecutrho         = 400,
    conv_thr        = 1.0e-5,
    mixing_beta     = 0.7,
    mixing_mode     = 'local-TF',
    degauss         = 0.001
    )
sims.append(scf)

# Convert DFT Wavefunction Into HDF5 File For QMCPACK
p2q = generate_pw2qmcpack(
    identifier      = 'p2q',
    path            = '.',
    job             = p2q_job,
    write_psir      = False,
    dependencies    = (scf,'orbitals')
コード例 #10
0
                                 elem=['C', 'C'],
                                 pos=[[0., 0., 0.], [0.8925, 0.8925, 0.8925]],
                                 tiling=(2, 2, 2),
                                 kgrid=(1, 1, 1),
                                 kshift=(0, 0, 0),
                                 C=4)

# most familiar
scf = generate_pwscf(
    # Nexus Simulation class inputs
    identifier='scf',
    path='diamond/scf',
    job=job(cores=16, app='pw.x'),
    # PwscfInput class inputs
    input_type='generic',
    calculation='scf',
    input_dft='lda',
    ecutwfc=200,
    conv_thr=1e-8,
    nosym=True,
    wf_collect=True,
    system=dia16,  # shared by Simulation/PwscfInput
    pseudos=['C.BFD.upf'],  # shared by Simulation/PwscfInput
)

print
print '===================='
print 'overview of contents'
print '===================='
print repr(scf.input)  # PwscfInput class

#equivalent to the above
コード例 #11
0
ファイル: oxygen_dimer.py プロジェクト: Paul-St-Young/myNexus
    dimer      = ('O','O'),    # atoms in dimer
    separation = 1.2074*scale, # dimer bond length
    Lbox       = 15.0,         # box size
    units      = 'A',          # Angstrom units
    net_spin   = 2,            # Nup-Ndown = 2
    O          = 6             # O has 6 val. electrons
    )

# describe scf run
scf = generate_pwscf(
    identifier   = 'scf',
    path         = directory,
    system       = dimer,
    job          = Job(cores=16),
    input_type   = 'scf',
    pseudos      = ['O.BFD.upf'],
    input_dft    = 'lda',
    ecut         = 200,
    conv_thr     = 1e-7,
    mixing_beta  = .7,
    nosym        = True,
    wf_collect   = True
    )
sims.append(scf)

# describe orbital conversion
p2q = generate_pw2qmcpack(
    identifier   = 'p2q',
    path         = directory,
    job          = Job(cores=1),
    write_psir   = False,
    dependencies = (scf,'orbitals')
コード例 #12
0
                    (4,4,4),  #  64 k-points
                    (6,6,6)]  # 216 k-points



# describe the relaxation calculations
# and link them together into a simulation cascade
relaxations = []                        # list of relax simulation objects
for kgrid in supercell_kgrids:          # loop over supercell kgrids
    relax = generate_pwscf(             # make each relax simulation
        identifier = 'relax',               # file prefix
                                            # run directory
        path       = 'relax/kgrid_{0}{1}{2}'.format(*kgrid),
        job        = Job(cores=16),         # will run with mpirun -np 16
        input_type = 'relax',               # this is a relax calculation
        input_dft  = 'pbe',                 # PBE functional
        ecut       = 50,                    # 50 Ry planewave cutoff
        conv_thr   = 1e-6,                  # convergence threshold
        kgrid      = kgrid,                 # supercell k-point grid
        kshift     = (1,1,1),               # grid centered at supercell L point
        pseudos    = ['Ge.pbe-kjpaw.UPF'],  # PBE pseudopotential
        system     = T_system               # the interstitial system
        )
                                        # link together the simulation cascade
                                        #   current relax gets structure from previous
    if len(relaxations)>0:              #   if it exists
        relax.depends(relaxations[-1],'structure')
    #end if
    relaxations.append(relax)           # add relax simulation to the list
#end for

コード例 #13
0
# twist-mesh used for qmc
dia16.structure.add_symmetrized_kmesh(kgrid=(2,2,2),kshift=(0,0,0))


number_of_ks_orbs = 11

scf = generate_pwscf(
    identifier   = 'scf',
    path         = 'scf',
    job          = job(cores=1,app='pw.x',hours=1),
    input_type   = 'generic',
    calculation  = 'scf',
    nspin        = 2,
    tot_magnetization = 0,
    nbnd         = number_of_ks_orbs,
    input_dft    = 'lda',
    ecutwfc      = 200,
    conv_thr     = 1e-8,
    nosym        = False,
    wf_collect   = False,
    system       = dia16,
    kgrid        = scf_kg,
    kshift       = (0,0,0),
    pseudos      = ['C.BFD.upf'],
    )

nscf = generate_pwscf(
    identifier   = 'nscf',
    path         = 'nscf',
    job          = job(cores=1,app='pw.x',hours=1),
    input_type   = 'generic',
コード例 #14
0
s.write('d16vac.xsf')

dia16vac = generate_physical_system(
    structure = s,
    C         = 4,
    )
print b+'net charge:',dia16vac.net_charge
              
scf = generate_pwscf(
    identifier  = 'scf',
    path        = 'diamond/scf',
    job         = scf_job,
    input_type  = 'generic',
    calculation = 'scf',
    input_dft   = 'lda', 
    ecutwfc     = 200,
    mixing_beta = 0.2,
    degauss     = 0.01,
    conv_thr    = 1e-6,
    system      = dia16vac,
    kgrid       = (3,3,3),
    kshift      = (0,0,0),
    pseudos     = ['C.BFD.upf'], 
    )
print b+'scf directory:',scf.locdir

si = scf.input
print b+'scf input data\n',si
print b+'scf input file\n',si.write()

pm = run_project()
print b+'status after execute:'
コード例 #15
0
    elem   = ['C','C'],
    pos    = [[ 0.    ,  0.    ,  0.    ],
              [ 0.8925,  0.8925,  0.8925]],
    tiling = (2,2,2),
    kgrid  = (1,1,1),
    kshift = (0,0,0),
    C      = 4
    )
              
scf = generate_pwscf(
    identifier   = 'scf',
    path         = 'diamond/scf',
    job          = Job(cores=16,app='pw.x'),
    input_type   = 'generic',
    calculation  = 'scf',
    input_dft    = 'lda', 
    ecutwfc      = 200,   
    conv_thr     = 1e-8, 
    nosym        = True,
    wf_collect   = True,
    system       = dia16,
    pseudos      = ['C.BFD.upf'], 
    )

conv = generate_pw2qmcpack(
    identifier   = 'conv',
    path         = 'diamond/scf',
    job          = Job(cores=1,app='pw2qmcpack.x'),
    write_psir   = False,
    dependencies = (scf,'orbitals')
    )
コード例 #16
0
    (2, 2, 2),  #   8 k-points
    (4, 4, 4),  #  64 k-points
    (6, 6, 6)
]  # 216 k-points

# describe the relaxation calculations
# and link them together into a simulation cascade
relaxations = []  # list of relax simulation objects
for kgrid in supercell_kgrids:  # loop over supercell kgrids
    relax = generate_pwscf(  # make each relax simulation
        identifier='relax',  # file prefix
        # run directory
        path='relax/kgrid_{0}{1}{2}'.format(*kgrid),
        job=Job(cores=16),  # will run with mpirun -np 16
        input_type='relax',  # this is a relax calculation
        input_dft='pbe',  # PBE functional
        ecut=50,  # 50 Ry planewave cutoff
        conv_thr=1e-6,  # convergence threshold
        kgrid=kgrid,  # supercell k-point grid
        kshift=(1, 1, 1),  # grid centered at supercell L point
        pseudos=['Ge.pbe-kjpaw.UPF'],  # PBE pseudopotential
        system=T_system  # the interstitial system
    )
    # link together the simulation cascade
    #   current relax gets structure from previous
    if len(relaxations) > 0:  #   if it exists
        relax.depends(relaxations[-1], 'structure')
    #end if
    relaxations.append(relax)  # add relax simulation to the list
#end for

# perform the simulations
コード例 #17
0
             [ 0.,   x  ,  0.0   ],
             [ 0.,   0. ,   x    ]],
    elem   = ['O','O'],
    pos    = [[ x/2-d/2    ,  x/2    ,  x/2    ],
              [ x/2+d/2    ,  x/2    ,  x/2    ]],
    net_spin  = 0,
    tiling    = (1,1,1),
    kgrid     = (1,1,1), # scf kgrid given below to enable symmetries
    kshift    = (0,0,0),
    O         = 6,
)

scf = generate_pwscf(
    identifier   = 'scf',
    path         = 'scf'+str(ind),
    job          = jobs['scf'],
    input_type   = 'generic',
    calculation  = 'scf',
    input_dft    = 'lda', 
    for kgtid in [(1,1,1), (2,2,2), (3,3,3)]:
        ecutwfc      = 200,   
        conv_thr     = 1e-8, 
        nosym        = True,
        wf_collect   = True,
        system       = O2,
#        kgrid        = (1,1,1),
        pseudos      = ['O.BFD.upf'],
        ind += 1
    )
scfs.append(scf)
コード例 #18
0
ファイル: oxygen_dimer.py プロジェクト: jefflarkin/qmcpack
    dimer      = ('O','O'),    # atoms in dimer
    separation = 1.2074*scale, # dimer bond length
    Lbox       = 15.0,         # box size
    units      = 'A',          # Angstrom units
    net_spin   = 2,            # Nup-Ndown = 2
    O          = 6             # O has 6 val. electrons
    )

# describe scf run
scf = generate_pwscf(
    identifier   = 'scf',
    path         = directory,
    system       = dimer,
    job          = Job(cores=16),
    input_type   = 'scf',
    pseudos      = ['O.BFD.upf'],
    input_dft    = 'lda',
    ecut         = 200,
    conv_thr     = 1e-7,
    mixing_beta  = .7,
    nosym        = True,
    wf_collect   = True
    )
sims.append(scf)

# describe orbital conversion
p2q = generate_pw2qmcpack(
    identifier   = 'p2q',
    path         = directory,
    job          = Job(cores=1),
    write_psir   = False,
    dependencies = (scf,'orbitals')
コード例 #19
0
ファイル: diamond.py プロジェクト: kayahans/nexus_training
        kshift=(0, 0, 0),
    )

    dia16_struct.rescale(scaling)

    dia16 = generate_physical_system(structure=dia16_struct, C=4)

    basepath = 'diamond/scale_{0:3.2f}'.format(scaling)

    scf = generate_pwscf(
        identifier='scf',
        path=basepath + '/scf',
        job=scf_job,
        input_type='generic',
        calculation='scf',
        input_dft='lda',
        ecutwfc=200,
        conv_thr=1e-8,
        nosym=True,
        wf_collect=True,
        system=dia16,
        pseudos=['C.BFD.upf'],
    )

    conv = generate_pw2qmcpack(
        identifier='conv',
        path=basepath + '/scf',
        job=conv_job,
        write_psir=False,
        dependencies=(scf, 'orbitals'),
    )
コード例 #20
0
    kgrid           = (1,1,1),
    kshift          = (0,0,0),
    net_charge      = 0,
    net_spin        = 0,
    Li              = 1,
    H               = 1,
    )

# DFT SCF To Generate Converged Density
scf = generate_pwscf(
    identifier      = 'scf',
    path            = '.',
    job             = scf_job,
    input_type      = 'scf',
    system          = rocksalt_LiH,
    pseudos         = dft_pps,
    ecut            = 450,
    ecutrho         = 1800,
    conv_thr        = 1.0e-10,
    mixing_beta     = 0.7,
    kgrid           = (7,7,7),
    kshift          = (1,1,1),
    )

# DFT NSCF To Generate Wave Function At Specified K-points
nscf = generate_pwscf(
    identifier      = 'nscf',
    path            = '.',
    job             = nscf_job,
    input_type      = 'nscf',
    system          = rocksalt_LiH,
    pseudos         = dft_pps,
コード例 #21
0
    use_prim  = True,    # Use SeeK-path library to identify prim cell
    tiling    = [3,1,3], # Tile the cell
    kgrid     = (1,1,1), 
    kshift    = (0,0,0), # Assumes we study transitions from Gamma. For non-gamma tilings, use kshift appropriately
    C         = 4
    )

scf = generate_pwscf(
    identifier   = 'scf',
    path         = 'scf',
    job          = job(cores=16,app='pw.x'),
    input_type   = 'generic',
    calculation  = 'scf',
    nspin        = 2,
    input_dft    = 'lda', 
    ecutwfc      = 200,   
    conv_thr     = 1e-8, 
    nosym        = False,
    wf_collect   = False,
    system       = dia,
    kgrid        = (4,4,4),
    kshift       = (0,0,0),
    tot_magnetization = 0,
    pseudos      = ['C.BFD.upf'], 
    )

nscf = generate_pwscf(
    identifier   = 'nscf',
    path         = 'nscf',
    job          = job(cores=16,app='pw.x'),
    input_type   = 'generic',
    calculation  = 'nscf',
コード例 #22
0
ファイル: c20.py プロジェクト: zenandrea/qmcpack
    structure=structure,  # C20 structure
    net_charge=0,  # net charge in units of e
    net_spin=0,  # net spin in units of e-spin
    C=4,  # C has 4 valence electrons
)

# scf run produces charge density
scf = generate_pwscf(
    # nexus inputs
    identifier='scf',  # identifier/file prefix
    path='c20/scf',  # directory for scf run
    job=job(cores=16),  # run on 16 cores
    pseudos=['C.BFD.upf'],  # pwscf PP file
    system=c20,  # run c20
    # input format selector
    input_type='scf',  # scf, nscf, relax, or generic
    # pwscf input parameters
    input_dft='lda',  # dft functional
    ecut=150,  # planewave energy cutoff (Ry)
    conv_thr=1e-6,  # scf convergence threshold (Ry)
    mixing_beta=.7,  # charge mixing factor
    nosym=True,  # don't use symmetry
    wf_collect=True,  # write out orbitals
)

# orbital conversion job for opt and dmc
p2q = generate_pw2qmcpack(
    # nexus inputs
    identifier='p2q',
    path='c20/nscf',
    job=job(cores=1),
コード例 #23
0
    kgrid=(1, 1, 1),
    kshift=(
        0, 0, 0
    ),  # Assumes we study transitions from Gamma. For non-gamma tilings, use kshift appropriately
    tiling=[3, 1, 3],
    C=4,
)

scf = generate_pwscf(
    identifier='scf',
    path='diamond/scf',
    job=job(nodes=1, app='pw.x', hours=1),
    input_type='generic',
    calculation='scf',
    nspin=2,
    input_dft='lda',
    ecutwfc=200,
    conv_thr=1e-8,
    nosym=True,
    wf_collect=True,
    system=dia2,
    tot_magnetization=0,
    pseudos=['C.BFD.upf'],
)

nscf = generate_pwscf(
    identifier='nscf',
    path='diamond/nscf',
    job=job(nodes=1, app='pw.x', hours=1),
    input_type='generic',
    calculation='nscf',
    input_dft='lda',
コード例 #24
0
              [ 0.,   x  ,  0.0   ],
              [ 0.,   0. ,   x    ]],
    elem   = ['O','O'],
    pos    = [[ x/2-d/2    ,  x/2    ,  x/2    ],
              [ x/2+d/2    ,  x/2    ,  x/2    ]],
    net_spin  = 0,
    tiling    = (1,1,1),
    kgrid     = (1,1,1), # scf kgrid given below to enable symmetries
    kshift    = (0,0,0),
    O         = 6,
)

scf = generate_pwscf(
    identifier   = 'scf',
    path         = 'scf',
    job          = jobs['scf'],
    input_type   = 'generic',
    calculation  = 'scf',
    input_dft    = 'lda', 
    ecutwfc      = 200,   
    conv_thr     = 1e-8, 
    nosym        = True,
    wf_collect   = True,
    system       = O2,
    kgrid        = (1,1,1),
    pseudos      = ['O.BFD.upf'], 
    )

run_project(scf)