コード例 #1
0
def create_mb(mb_mod, bg_rms, coord1, coord2, psf_bg_rms, psf_im, noise):
    #creats multiband object
    mb = MultiBandObsList()
    for i in range(len(mb_mod[:])):
        o = observation(mb_mod[i], bg_rms, coord1, coord2, psf_bg_rms, psf_im)
        o.noise = noise[i]
        olist = ObsList()
        olist.append(o)
        mb.append(olist)

    return mb
コード例 #2
0
ファイル: test_obslist.py プロジェクト: aguinot/ngmix
def test_obslist_smoke():
    rng = np.random.RandomState(seed=11)
    meta = {'duh': 5}
    obslist = ObsList(meta=meta)
    for _ in range(3):
        obslist.append(Observation(image=rng.normal(size=(13, 15))))

    assert obslist.meta == meta
    rng = np.random.RandomState(seed=11)
    for obs in obslist:
        assert np.all(obs.image == rng.normal(size=(13, 15)))
コード例 #3
0
ファイル: test_obslist.py プロジェクト: aguinot/ngmix
def test_obslist_s2n_zeroweight():
    rng = np.random.RandomState(seed=11)
    obslist = ObsList()
    for _ in range(3):
        obs = Observation(
            image=rng.normal(size=(13, 15)),
            weight=np.zeros((13, 15)),
            store_pixels=False,
        )
        obslist.append(obs)

    assert np.allclose(obslist.get_s2n(), -9999)
コード例 #4
0
ファイル: test_obslist.py プロジェクト: aguinot/ngmix
def test_obslist_s2n():
    rng = np.random.RandomState(seed=11)
    obslist = ObsList()
    numer = 0
    denom = 0
    for _ in range(3):
        obs = Observation(image=rng.normal(size=(13, 15)))
        numer += np.sum(obs.image)
        denom += np.sum(1.0 / obs.weight)
        obslist.append(obs)

    s2n = obslist.get_s2n()
    assert s2n == numer / np.sqrt(denom)
コード例 #5
0
    def _get_mof_obs(self):
        im, psf_im, coords, dims, dx1, dy1, noises = self.sim()

        bg_rms = self.sim['Image']['Bgrms'] / np.sqrt(len(im))
        bg_rms_psf = self.sim['Psf']['Bgrms_psf']

        psf_ccen = (np.array(psf_im.shape) - 1.0) / 2.0
        psf_jacob = ngmix.UnitJacobian(
            row=psf_ccen[0],
            col=psf_ccen[1],
        )
        psf_weight = psf_im * 0 + 1.0 / bg_rms_psf**2
        psf_obs = ngmix.Observation(
            psf_im,
            weight=psf_weight,
            jacobian=psf_jacob,
        )

        psf_gmix = self._fit_psf_admom(psf_obs)
        psf_obs.set_gmix(psf_gmix)

        mb = MultiBandObsList()
        for i in range(len(im)):
            if self.show:
                import images
                tim = im[i] / im[i].max()
                tim = np.log10(tim - tim.min() + 1.0)

                images.view(tim)
                if 'q' == input('hit a key: (q to quit) '):
                    stop

            weight = im[i] * 0 + 1.0 / bg_rms**2
            jacobian = ngmix.UnitJacobian(
                row=0,
                col=0,
            )

            obs = ngmix.Observation(
                im[i],
                weight=weight,
                jacobian=jacobian,
                psf=psf_obs,
            )
            obs.noise = noises[i]
            olist = ObsList()
            olist.append(obs)
            mb.append(olist)

        return mb, coords
コード例 #6
0
ファイル: test_multibandobslist.py プロジェクト: emhuff/ngmix
def test_multibandobslist_smoke():
    rng = np.random.RandomState(seed=11)
    meta = {'duh': 5}
    mbobs = MultiBandObsList(meta=meta)

    for _ in range(5):
        obslist = ObsList()
        for _ in range(3):
            obslist.append(Observation(image=rng.normal(size=(13, 15))))
        mbobs.append(obslist)

    assert mbobs.meta == meta
    rng = np.random.RandomState(seed=11)
    for obslist in mbobs:
        for obs in obslist:
            assert np.all(obs.image == rng.normal(size=(13, 15)))
コード例 #7
0
    def get_exp_list(self, psf2=None):

        if psf2 is None:
            psf2 = self.psfs

        obs_list = ObsList()
        psf_list = ObsList()

        w = []
        for i in range(len(self.gals)):
            im = self.gals[i].array
            im_psf = self.psfs[i].array
            im_psf2 = psf2[i].array
            weight = 1 / self.skys[i].array

            jacob = self.gals[i].wcs.jacobian()
            dx = self.offsets[i].x
            dy = self.offsets[i].y

            gal_jacob = Jacobian(row=self.gals[i].true_center.y + dy,
                                 col=self.gals[i].true_center.x + dx,
                                 dvdrow=jacob.dvdy,
                                 dvdcol=jacob.dvdx,
                                 dudrow=jacob.dudy,
                                 dudcol=jacob.dudx)
            psf_jacob2 = gal_jacob

            mask = np.where(weight != 0)
            w.append(np.mean(weight[mask]))
            noise = old_div(np.ones_like(weight), w[-1])

            psf_obs = Observation(im_psf,
                                  jacobian=gal_jacob,
                                  meta={
                                      'offset_pixels': None,
                                      'file_id': None
                                  })
            psf_obs2 = Observation(im_psf2,
                                   jacobian=psf_jacob2,
                                   meta={
                                       'offset_pixels': None,
                                       'file_id': None
                                   })
            obs = Observation(im,
                              weight=weight,
                              jacobian=gal_jacob,
                              psf=psf_obs,
                              meta={
                                  'offset_pixels': None,
                                  'file_id': None
                              })
            obs.set_noise(noise)

            obs_list.append(obs)
            psf_list.append(psf_obs2)

        return obs_list, psf_list, np.array(w)
コード例 #8
0
def test_multibandobslist_s2n_zeroweight():
    rng = np.random.RandomState(seed=11)
    mbobs = MultiBandObsList()

    for _ in range(5):
        obslist = ObsList()
        for _ in range(3):
            img = rng.normal(size=(13, 15))
            obslist.append(
                Observation(
                    image=img,
                    weight=np.zeros((13, 15)),
                    store_pixels=False,
                ))

        mbobs.append(obslist)

    assert np.allclose(mbobs.get_s2n(), -9999)
コード例 #9
0
ファイル: test_multibandobslist.py プロジェクト: emhuff/ngmix
def test_multibandobslist_s2n():
    rng = np.random.RandomState(seed=11)
    mbobs = MultiBandObsList()

    numer = 0
    denom = 0
    for _ in range(5):
        obslist = ObsList()
        for _ in range(3):
            img = rng.normal(size=(13, 15))
            obslist.append(Observation(image=img))

            numer += np.sum(img)
            denom += np.sum(1.0 / obslist[-1].weight)
        mbobs.append(obslist)

    s2n = mbobs.get_s2n()
    assert s2n == numer / np.sqrt(denom)
コード例 #10
0
ファイル: test_make_kobs.py プロジェクト: aguinot/ngmix
def obslist_data():
    dims = (12, 12)
    rng = np.random.RandomState(seed=10)
    jac = DiagonalJacobian(x=5.5, y=5.5, scale=0.25)

    obslist = ObsList()
    obslist.append(
        Observation(
            image=rng.normal(size=dims),
            jacobian=jac.copy(),
            weight=np.exp(rng.normal(size=dims)),
            meta={"blue": 10},
        )
    )
    obslist.append(
        Observation(
            image=rng.normal(size=dims),
            jacobian=jac.copy(),
            weight=np.exp(rng.normal(size=dims)),
            meta={"blue": 8},
        )
    )

    psf = Observation(
        image=rng.normal(size=dims),
        weight=np.exp(rng.normal(size=dims)),
        jacobian=jac.copy(),
        meta={"blue": 5},
    )
    obslist[1].psf = psf

    return obslist
コード例 #11
0
def test_multibandobslist_set():
    rng = np.random.RandomState(seed=11)
    meta = {'duh': 5}
    mbobs = MultiBandObsList(meta=meta)

    for _ in range(5):
        obslist = ObsList()
        for _ in range(3):
            obslist.append(Observation(image=rng.normal(size=(13, 15))))
        mbobs.append(obslist)

    assert mbobs.meta == meta
    new_meta = {'blah': 6}
    mbobs.meta = new_meta
    assert mbobs.meta == new_meta
    mbobs.meta = None
    assert len(mbobs.meta) == 0
    with pytest.raises(TypeError):
        mbobs.meta = [10]
    with pytest.raises(TypeError):
        mbobs.set_meta([10])

    new_meta = {'bla': 6}
    new_meta.update(mbobs.meta)
    mbobs.update_meta_data({'bla': 6})
    assert mbobs.meta == new_meta
    with pytest.raises(TypeError):
        mbobs.update_meta_data([10])

    rng = np.random.RandomState(seed=12)
    new_obs = Observation(image=rng.normal(size=(13, 15)))
    rng = np.random.RandomState(seed=11)
    for obslist in mbobs:
        for obs in obslist:
            assert np.all(obs.image == rng.normal(size=(13, 15)))
    mbobs[1][2] = new_obs
    assert np.all(mbobs[1][2].image == new_obs.image)

    rng = np.random.RandomState(seed=13)
    obslist = ObsList()
    for _ in range(4):
        obslist.append(Observation(image=rng.normal(size=(13, 15))))
    mbobs[2] = obslist
    rng = np.random.RandomState(seed=13)
    for obs in mbobs[2]:
        assert np.all(obs.image == rng.normal(size=(13, 15)))
コード例 #12
0
def get_exp_list(gals_array, psfs_array, offsets, skys_array, gal_true, gal_jacobs, psf2=None):
    #def get_exp_list(gal, psf, sky_stamp, psf2=None):

    if psf2 is None:
        psf2 = psfs_array

    obs_list=ObsList()
    psf_list=ObsList()

    w = []
    for i in range(len(gals_array)):
        im = gals_array[i]
        im_psf = psfs_array[i]
        im_psf2 = psf2[i]
        weight = 1/skys_array[i]

        jacob = gal_jacobs[i]
        dx = offsets[i].x
        dy = offsets[i].y
        
        gal_jacob = Jacobian(
            row=gal_true[i].y+dy,
            col=gal_true[i].x+dx,
            dvdrow=jacob.dvdy,
            dvdcol=jacob.dvdx,
            dudrow=jacob.dudy,
            dudcol=jacob.dudx)
        psf_jacob2 = gal_jacob
        print(gal_jacob)

        mask = np.where(weight!=0)
        w.append(np.mean(weight[mask]))
        noise = old_div(np.ones_like(weight),w[-1])
        psf_obs = Observation(im_psf, jacobian=gal_jacob, meta={'offset_pixels':None,'file_id':None})
        psf_obs2 = Observation(im_psf2, jacobian=psf_jacob2, meta={'offset_pixels':None,'file_id':None})
        obs = Observation(im, weight=weight, jacobian=gal_jacob, psf=psf_obs, meta={'offset_pixels':None,'file_id':None})
        obs.set_noise(noise)

        obs_list.append(obs)
        psf_list.append(psf_obs2)

    return obs_list,psf_list,np.array(w)
コード例 #13
0
ファイル: test_multibandobslist.py プロジェクト: emhuff/ngmix
def test_get_mbobs():
    rng = np.random.RandomState(seed=11)
    obs = Observation(image=rng.normal(size=(11, 13)))

    mbobs = get_mb_obs(obs)
    rng = np.random.RandomState(seed=11)
    assert np.all(mbobs[0][0].image == rng.normal(size=(11, 13)))
    assert len(mbobs) == 1
    assert len(mbobs[0]) == 1

    rng = np.random.RandomState(seed=12)
    obslist = ObsList()
    for _ in range(3):
        obslist.append(Observation(image=rng.normal(size=(11, 13))))
    mbobs = get_mb_obs(obslist)
    rng = np.random.RandomState(seed=12)
    for obs in mbobs[0]:
        assert np.all(obs.image == rng.normal(size=(11, 13)))
    assert len(mbobs) == 1
    assert len(mbobs[0]) == 3

    rng = np.random.RandomState(seed=13)
    mbobs = MultiBandObsList()
    for _ in range(5):
        obslist = ObsList()
        for _ in range(3):
            obslist.append(Observation(image=rng.normal(size=(13, 15))))
        mbobs.append(obslist)

    new_mbobs = get_mb_obs(mbobs)
    rng = np.random.RandomState(seed=13)
    for obslist in new_mbobs:
        for obs in obslist:
            assert np.all(obs.image == rng.normal(size=(13, 15)))

    with pytest.raises(ValueError):
        get_mb_obs(None)
コード例 #14
0
ファイル: test_obslist.py プロジェクト: emhuff/ngmix
def test_obslist_set():
    rng = np.random.RandomState(seed=11)
    meta = {'duh': 5}
    obslist = ObsList(meta=meta)
    for _ in range(3):
        obslist.append(Observation(image=rng.normal(size=(13, 15))))

    assert obslist.meta == meta
    new_meta = {'blah': 6}
    obslist.meta = new_meta
    assert obslist.meta == new_meta

    new_meta = {'bla': 6}
    new_meta.update(obslist.meta)
    obslist.update_meta_data({'bla': 6})
    assert obslist.meta == new_meta

    rng = np.random.RandomState(seed=12)
    new_obs = Observation(image=rng.normal(size=(13, 15)))
    rng = np.random.RandomState(seed=11)
    for obs in obslist:
        assert np.all(obs.image == rng.normal(size=(13, 15)))
    obslist[1] = new_obs
    assert np.all(obslist[1].image == new_obs.image)
コード例 #15
0
        def get_obslist(self, iobj, weight_type='weight'):
            """Get an ngmix ObsList for all observations.

            Parameters
            ----------
            iobj : int
                Index of the object.
            weight_type: string, optional
                Weight type. can be one of
                    'weight': the actual weight map
                    'uberseg': uberseg modified weight map
                    'cweight': weight map zeroed outside the object's seg map
                    'cseg': weight map zeroed outside of circular aperture that
                        doesn't touch any other object.
                    'cseg-canonical': same as 'cseg' but uses the postage stamp
                        center instead of the object's position.
                Default is 'weight'

            Returns
            -------
            obslist : ngmix.ObsList
                An `ObsList` of all observations.
            """
            obslist = ObsList()
            for icut in range(self._cat['ncutout'][iobj]):
                try:
                    obs = self.get_obs(iobj, icut, weight_type=weight_type)
                    obslist.append(obs)
                except GMixFatalError:
                    print('zero weight observation found, skipping')

            if len(obslist) > 0:
                obs = obslist[0]
                if 'flux' in obs.meta:
                    obslist.meta['flux'] = obs.meta['flux']
                if 'T' in obs.meta:
                    obslist.meta['T'] = obs.meta['T']
            return obslist
コード例 #16
0
def make_multiband_coadd_stamp():

    oversample = 4
    H = './fiducial_H158_2285117.fits'
    J = './fiducial_J129_2285117.fits'
    F = './fiducial_F184_2285117.fits'
    truth = fio.FITS('/hpc/group/cosmology/phy-lsst/my137/roman_H158/g1002/truth/fiducial_lensing_galaxia_g1002_truth_gal.fits')[-1]
    m_H158  = meds.MEDS(H)
    m_J129  = meds.MEDS(J)
    m_F184  = meds.MEDS(F)
    indices_H = np.arange(len(m_H158['number'][:]))
    indices_J = np.arange(len(m_J129['number'][:]))
    indices_F = np.arange(len(m_F184['number'][:]))
    roman_H158_psfs = get_psf_SCA('H158')
    roman_J129_psfs = get_psf_SCA('J129')
    roman_F184_psfs = get_psf_SCA('F184')

    for i,ii in enumerate(indices_H):

        if i%100==0:
            print('made it to object',i)

        try_save = False

        ind = m_H158['number'][ii]
        t   = truth[ind]

        if (ind not in m_J129['number']) or (ind not in m_F184['number']):
            continue

        print(i)
        # if i==13:
        sca_Hlist = m_H158[ii]['sca'] # List of SCAs for the same object in multiple observations. 
        ii_J = m_J129[m_J129['number']==ind]['id'][0]
        sca_Jlist = m_J129[ii_J]['sca']
        m2_H158_coadd = [roman_H158_psfs[j-1] for j in sca_Hlist[:m_H158['ncutout'][i]]]
        m2_J129_coadd = [roman_J129_psfs[j-1] for j in sca_Jlist[:m_J129['ncutout'][ii_J]]]
        ii_F = m_F184[m_F184['number']==ind]['id'][0]
        sca_Flist = m_F184[ii_F]['sca']
        m2_F184_coadd = [roman_F184_psfs[j-1] for j in sca_Flist[:m_F184['ncutout'][ii_F]]]

        obs_Hlist,psf_Hlist,included_H,w_H = get_exp_list_coadd(m_H158,ii,oversample,m2=m2_H158_coadd)
        obs_Jlist,psf_Jlist,included_J,w_J = get_exp_list_coadd(m_J129,ii_J,oversample,m2=m2_J129_coadd)
        obs_Flist,psf_Flist,included_F,w_F = get_exp_list_coadd(m_F184,ii_F,oversample,m2=m2_F184_coadd)
        # check if masking is less than 20%
        if len(obs_Hlist)==0 or len(obs_Jlist)==0 or len(obs_Flist)==0: 
            continue
    
        coadd_H            = psc.Coadder(obs_Hlist,flat_wcs=True).coadd_obs
        coadd_H.psf.image[coadd_H.psf.image<0] = 0 # set negative pixels to zero. 
        coadd_H.psf.set_meta({'offset_pixels':None,'file_id':None})
        coadd_H.set_meta({'offset_pixels':None,'file_id':None})
        
        coadd_J            = psc.Coadder(obs_Jlist,flat_wcs=True).coadd_obs
        coadd_J.psf.image[coadd_J.psf.image<0] = 0 # set negative pixels to zero. 
        coadd_J.psf.set_meta({'offset_pixels':None,'file_id':None})
        coadd_J.set_meta({'offset_pixels':None,'file_id':None})

        coadd_F            = psc.Coadder(obs_Flist,flat_wcs=True).coadd_obs
        coadd_F.psf.image[coadd_F.psf.image<0] = 0 # set negative pixels to zero. 
        coadd_F.psf.set_meta({'offset_pixels':None,'file_id':None})
        coadd_F.set_meta({'offset_pixels':None,'file_id':None})

        obs_list = ObsList()
        multiband = [coadd_H, coadd_J, coadd_F]
        for f in range(3):
            obs_list.append(multiband[f])
        multiband_coadd = psc.Coadder(obs_list,flat_wcs=True).coadd_obs

        print('single snr', get_snr(obs_Jlist), get_snr(obs_Hlist), get_snr(obs_Flist))
        print('coadd snr', get_snr([coadd_J]), get_snr([coadd_H]), get_snr([coadd_F]))
        print('final', get_snr(obs_list))
コード例 #17
0
def single_vs_coadd_images():
    local_Hmeds = './fiducial_F184_2285117.fits'
    truth = fio.FITS('/hpc/group/cosmology/phy-lsst/my137/roman_F184/g1002/truth/fiducial_lensing_galaxia_g1002_truth_gal.fits')[-1]
    m_H158  = meds.MEDS(local_Hmeds)
    indices_H = np.arange(len(m_H158['number'][:]))
    roman_H158_psfs = get_psf_SCA('F184')
    oversample = 4
    metacal_keys=['noshear', '1p', '1m', '2p', '2m']
    res_noshear=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])
    res_1p=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])
    res_1m=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])
    res_2p=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])
    res_2m=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])

    res_tot=[res_noshear, res_1p, res_1m, res_2p, res_2m]
    for i,ii in enumerate(indices_H): # looping through all the objects in meds file. 
        if i%100==0:
            print('object number ',i)
        # if i not in [1,600]:
        #     continue
        ind = m_H158['number'][ii]
        t   = truth[ind]
        sca_Hlist = m_H158[ii]['sca'] # List of SCAs for the same object in multiple observations. 
        m2_H158_coadd = [roman_H158_psfs[j-1] for j in sca_Hlist[:m_H158['ncutout'][i]]]

        obs_Hlist,psf_Hlist,included_H,w_H = get_exp_list_coadd(m_H158,ii,oversample,m2=m2_H158_coadd)
        s2n_test = get_snr(obs_Hlist)
        # if i in [1,600]: #in [ 309,  444,  622,  644,  854, 1070, 1282, 1529]:
        #     for l in range(len(obs_Hlist)):
        #         #print(i, obs_Hlist[l].jacobian, obs_Hlist[l].psf.jacobian)
        #         print(i, obs_Hlist[l].weight)
                # np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/single_image_oversample4_08scaling_'+str(i)+'_'+str(l)+'.txt', obs_Hlist[l].image)
            # np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/single_psf_oversample4_08scaling_'+str(i)+'.txt', obs_Hlist[0].psf.image)
        coadd_H            = psc.Coadder(obs_Hlist,flat_wcs=True).coadd_obs
        coadd_H.psf.image[coadd_H.psf.image<0] = 0 # set negative pixels to zero. 
        coadd_H.set_meta({'offset_pixels':None,'file_id':None})

        obs_list = ObsList()
        if oversample == 4:
            new_coadd_psf_block = block_reduce(coadd_H.psf.image, block_size=(4,4), func=np.sum)
            new_coadd_psf_jacob = Jacobian( row=15.5,
                                            col=15.5, 
                                            dvdrow=(coadd_H.psf.jacobian.dvdrow*oversample),
                                            dvdcol=(coadd_H.psf.jacobian.dvdcol*oversample),
                                            dudrow=(coadd_H.psf.jacobian.dudrow*oversample),
                                            dudcol=(coadd_H.psf.jacobian.dudcol*oversample))
            coadd_psf_obs = Observation(new_coadd_psf_block, jacobian=new_coadd_psf_jacob, meta={'offset_pixels':None,'file_id':None})
            coadd_H.psf = coadd_psf_obs
        obs_list.append(coadd_H)
        s2n_coadd = get_snr(obs_list)
        # if i in [1,600]:
        #     print(i, coadd_H.weight)
            #np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/coadd_image_oversample4_08scaling_'+str(i)+'.txt', coadd_H.image)
            # np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/coadd_weight_oversample4_08scaling_'+str(i)+'.txt', coadd_H.weight)
            #np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/coadd_psf_over-downsample4_08scaling_'+str(i)+'.txt', coadd_H.psf.image)

        iteration=0
        for key in metacal_keys:
            res_tot[iteration]['ind'][i]                       = ind
            res_tot[iteration]['ra'][i]                        = t['ra']
            res_tot[iteration]['dec'][i]                       = t['dec']
            res_tot[iteration]['int_e1'][i]                    = t['int_e1']
            res_tot[iteration]['int_e2'][i]                    = t['int_e2']

            iteration+=1
        
        res_ = measure_shape_metacal(obs_list, t['size'], method='bootstrap', fracdev=t['bflux'],use_e=[t['int_e1'],t['int_e2']])
        print('signal to noise test', i, s2n_test, s2n_coadd, res_['noshear']['s2n_r'])
        # if res_[key]['s2n'] > 1e7:
        #     print('coadd snr', res_[key]['s2n'])
        #     np.savetxt('large_coadd_snr_image.txt', coadd_H.image)
        iteration=0
        for key in metacal_keys:
            if res_==0:
                res_tot[iteration]['ind'][i]                       = 0
            elif res_[key]['flags']==0:
                res_tot[iteration]['coadd_px'][i]                  = res_[key]['pars'][0]
                res_tot[iteration]['coadd_py'][i]                  = res_[key]['pars'][1]
                res_tot[iteration]['coadd_snr'][i]                 = res_[key]['s2n']
                res_tot[iteration]['coadd_e1'][i]                  = res_[key]['pars'][2]
                res_tot[iteration]['coadd_e2'][i]                  = res_[key]['pars'][3]
                res_tot[iteration]['coadd_hlr'][i]                 = res_[key]['pars'][4]
            iteration+=1

    mask=res_tot[0]['ind']!=0
    print(len(res_tot[0]), len(res_tot[0][mask]))
    #print(res_['noshear'].dtype.names)
    print('done')
コード例 #18
0
ファイル: test_obslist.py プロジェクト: aguinot/ngmix
def test_obslist_append_err():
    obslist = ObsList()
    with pytest.raises(AssertionError):
        obslist.append(None)
コード例 #19
0
def get_exp_list_coadd(m, i, m2=None):
    def make_jacobian(dudx, dudy, dvdx, dvdy, x, y):
        j = galsim.JacobianWCS(dudx, dudy, dvdx, dvdy)
        return j.withOrigin(galsim.PositionD(x, y))

    oversample = 1
    #def psf_offset(i,j,star_):
    m3 = [0]
    #relative_offset=[0]
    for jj, psf_ in enumerate(m2):  # m2 has psfs for each observation.
        if jj == 0:
            continue
        gal_stamp_center_row = m['orig_start_row'][i][jj] + m['box_size'][
            i] / 2 - 0.5  # m['box_size'] is the galaxy stamp size.
        gal_stamp_center_col = m['orig_start_col'][i][jj] + m['box_size'][
            i] / 2 - 0.5  # m['orig_start_row/col'] is in SCA coordinates.
        psf_stamp_size = 32

        # Make the bounds for the psf stamp.
        b = galsim.BoundsI(
            xmin=(m['orig_start_col'][i][jj] +
                  (m['box_size'][i] - 32) / 2. - 1) * oversample + 1,
            xmax=(m['orig_start_col'][i][jj] +
                  (m['box_size'][i] - 32) / 2. + psf_stamp_size - 1) *
            oversample,
            ymin=(m['orig_start_row'][i][jj] +
                  (m['box_size'][i] - 32) / 2. - 1) * oversample + 1,
            ymax=(m['orig_start_row'][i][jj] +
                  (m['box_size'][i] - 32) / 2. + psf_stamp_size - 1) *
            oversample)

        # Make wcs for oversampled psf.
        wcs_ = make_jacobian(
            m.get_jacobian(i, jj)['dudcol'] / oversample,
            m.get_jacobian(i, jj)['dudrow'] / oversample,
            m.get_jacobian(i, jj)['dvdcol'] / oversample,
            m.get_jacobian(i, jj)['dvdrow'] / oversample,
            m['orig_col'][i][jj] * oversample,
            m['orig_row'][i][jj] * oversample)
        # Taken from galsim/roman_psfs.py line 266. Update each psf to an object-specific psf using the wcs.
        scale = galsim.PixelScale(wfirst.pixel_scale / oversample)
        psf_ = wcs_.toWorld(scale.toImage(psf_),
                            image_pos=galsim.PositionD(wfirst.n_pix / 2,
                                                       wfirst.n_pix / 2))

        # Convolve with the star model and get the psf stamp.
        #st_model = galsim.DeltaFunction(flux=1.)
        #st_model = st_model.evaluateAtWavelength(wfirst.getBandpasses(AB_zeropoint=True)['H158'].effective_wavelength)
        #st_model = st_model.withFlux(1.)
        #st_model = galsim.Convolve(st_model, psf_)
        psf_ = galsim.Convolve(psf_, galsim.Pixel(wfirst.pixel_scale))
        psf_stamp = galsim.Image(b, wcs=wcs_)

        # Galaxy is being drawn with some subpixel offsets, so we apply the offsets when drawing the psf too.
        offset_x = m['orig_col'][i][jj] - gal_stamp_center_col
        offset_y = m['orig_row'][i][jj] - gal_stamp_center_row
        offset = galsim.PositionD(offset_x, offset_y)
        if (offset_x <= -1.0 or offset_y <= -1.0):
            print(offset)
        elif (offset_x >= 1.0 or offset_y >= 1.0):
            print(offset)
        psf_.drawImage(image=psf_stamp, offset=offset, method='no_pixel')
        m3.append(psf_stamp.array)

    obs_list = ObsList()
    psf_list = ObsList()

    included = []
    w = []
    # For each of these objects create an observation
    for j in range(m['ncutout'][i]):
        if j == 0:
            continue
        # if j>1:
        #     continue
        im = m.get_cutout(i, j, type='image')
        weight = m.get_cutout(i, j, type='weight')

        im_psf = m3[j]
        im_psf2 = im_psf
        if np.sum(im) == 0.:
            #print(local_meds, i, j, np.sum(im))
            print('no flux in image ', i, j)
            continue

        jacob = m.get_jacobian(i, j)
        # Get a galaxy jacobian.
        gal_jacob = Jacobian(
            row=(m['orig_row'][i][j] - m['orig_start_row'][i][j]),
            col=(m['orig_col'][i][j] - m['orig_start_col'][i][j]),
            dvdrow=jacob['dvdrow'],
            dvdcol=jacob['dvdcol'],
            dudrow=jacob['dudrow'],
            dudcol=jacob['dudcol'])

        psf_center = (32 / 2.) + 0.5
        # Get a oversampled psf jacobian.
        if oversample == 1:
            psf_jacob2 = Jacobian(
                row=15.5 +
                (m['orig_row'][i][j] - m['orig_start_row'][i][j] + 1 -
                 (m['box_size'][i] / 2. + 0.5)) * oversample,
                col=15.5 +
                (m['orig_col'][i][j] - m['orig_start_col'][i][j] + 1 -
                 (m['box_size'][i] / 2. + 0.5)) * oversample,
                dvdrow=jacob['dvdrow'] / oversample,
                dvdcol=jacob['dvdcol'] / oversample,
                dudrow=jacob['dudrow'] / oversample,
                dudcol=jacob['dudcol'] / oversample)
        elif oversample == 4:
            psf_jacob2 = Jacobian(
                row=63.5 +
                (m['orig_row'][i][j] - m['orig_start_row'][i][j] + 1 -
                 (m['box_size'][i] / 2. + 0.5)) * oversample,
                col=63.5 +
                (m['orig_col'][i][j] - m['orig_start_col'][i][j] + 1 -
                 (m['box_size'][i] / 2. + 0.5)) * oversample,
                dvdrow=jacob['dvdrow'] / oversample,
                dvdcol=jacob['dvdcol'] / oversample,
                dudrow=jacob['dudrow'] / oversample,
                dudcol=jacob['dudcol'] / oversample)

        # Create an obs for each cutout
        mask = np.where(weight != 0)
        if 1. * len(weight[mask]) / np.product(np.shape(weight)) < 0.8:
            continue

        w.append(np.mean(weight[mask]))
        noise = np.ones_like(weight) / w[-1]

        psf_obs = Observation(im_psf,
                              jacobian=gal_jacob,
                              meta={
                                  'offset_pixels': None,
                                  'file_id': None
                              })
        psf_obs2 = Observation(im_psf2,
                               jacobian=psf_jacob2,
                               meta={
                                   'offset_pixels': None,
                                   'file_id': None
                               })
        #obs = Observation(im, weight=weight, jacobian=gal_jacob, psf=psf_obs, meta={'offset_pixels':None,'file_id':None})
        # oversampled PSF
        obs = Observation(im,
                          weight=weight,
                          jacobian=gal_jacob,
                          psf=psf_obs2,
                          meta={
                              'offset_pixels': None,
                              'file_id': None
                          })
        obs.set_noise(noise)

        obs_list.append(obs)
        psf_list.append(psf_obs2)
        included.append(j)

    return obs_list, psf_list, np.array(included) - 1, np.array(w)
コード例 #20
0
def multiband_coadd():
    local_Hmeds = './fiducial_H158_2285117.fits'
    local_Jmeds = './fiducial_J129_2285117.fits'
    local_Fmeds = './fiducial_F184_2285117.fits'
    truth = fio.FITS(
        '/hpc/group/cosmology/phy-lsst/my137/roman_H158/g1002/truth/fiducial_lensing_galaxia_g1002_truth_gal.fits'
    )[-1]
    m_H158 = meds.MEDS(local_Hmeds)
    m_J129 = meds.MEDS(local_Jmeds)
    m_F184 = meds.MEDS(local_Fmeds)
    indices_H = np.arange(len(m_H158['number'][:]))
    indices_J = np.arange(len(m_J129['number'][:]))
    indices_F = np.arange(len(m_F184['number'][:]))
    roman_H158_psfs = get_psf_SCA('H158')
    roman_J129_psfs = get_psf_SCA('J129')
    roman_F184_psfs = get_psf_SCA('F184')
    oversample = 1
    metacal_keys = ['noshear', '1p', '1m', '2p', '2m']
    res_noshear = np.zeros(len(m_H158['number'][:]),
                           dtype=[('ind', int), ('ra', float), ('dec', float),
                                  ('flags', int), ('coadd_px', float),
                                  ('coadd_py', float), ('coadd_flux', float),
                                  ('coadd_snr', float), ('coadd_e1', float),
                                  ('coadd_e2', float), ('coadd_hlr', float),
                                  ('coadd_psf_e1', float),
                                  ('coadd_psf_e2', float),
                                  ('coadd_psf_T', float)])
    res_1p = np.zeros(len(m_H158['number'][:]),
                      dtype=[('ind', int), ('ra', float), ('dec', float),
                             ('flags', int), ('coadd_px', float),
                             ('coadd_py', float), ('coadd_flux', float),
                             ('coadd_snr', float), ('coadd_e1', float),
                             ('coadd_e2', float), ('coadd_hlr', float),
                             ('coadd_psf_e1', float), ('coadd_psf_e2', float),
                             ('coadd_psf_T', float)])
    res_1m = np.zeros(len(m_H158['number'][:]),
                      dtype=[('ind', int), ('ra', float), ('dec', float),
                             ('flags', int), ('coadd_px', float),
                             ('coadd_py', float), ('coadd_flux', float),
                             ('coadd_snr', float), ('coadd_e1', float),
                             ('coadd_e2', float), ('coadd_hlr', float),
                             ('coadd_psf_e1', float), ('coadd_psf_e2', float),
                             ('coadd_psf_T', float)])
    res_2p = np.zeros(len(m_H158['number'][:]),
                      dtype=[('ind', int), ('ra', float), ('dec', float),
                             ('flags', int), ('coadd_px', float),
                             ('coadd_py', float), ('coadd_flux', float),
                             ('coadd_snr', float), ('coadd_e1', float),
                             ('coadd_e2', float), ('coadd_hlr', float),
                             ('coadd_psf_e1', float), ('coadd_psf_e2', float),
                             ('coadd_psf_T', float)])
    res_2m = np.zeros(len(m_H158['number'][:]),
                      dtype=[('ind', int), ('ra', float), ('dec', float),
                             ('flags', int), ('coadd_px', float),
                             ('coadd_py', float), ('coadd_flux', float),
                             ('coadd_snr', float), ('coadd_e1', float),
                             ('coadd_e2', float), ('coadd_hlr', float),
                             ('coadd_psf_e1', float), ('coadd_psf_e2', float),
                             ('coadd_psf_T', float)])

    res_tot = [res_noshear, res_1p, res_1m, res_2p, res_2m]
    for i, ii in enumerate(
            indices_H):  # looping through all the objects in meds file.
        if i % 100 == 0:
            print('object number ', i)
        ind = m_H158['number'][ii]
        t = truth[ind]
        sca_Hlist = m_H158[ii][
            'sca']  # List of SCAs for the same object in multiple observations.
        sca_Jlist = m_J129[ii]['sca']
        sca_Flist = m_F184[ii]['sca']
        m2_H158_coadd = [
            roman_H158_psfs[j - 1] for j in sca_Hlist[:m_H158['ncutout'][i]]
        ]
        m2_J129_coadd = [
            roman_J129_psfs[j - 1] for j in sca_Jlist[:m_J129['ncutout'][i]]
        ]
        m2_F184_coadd = [
            roman_F184_psfs[j - 1] for j in sca_Flist[:m_F184['ncutout'][i]]
        ]

        obs_Hlist, psf_Hlist, included_H, w_H = get_exp_list_coadd(
            m_H158, ii, m2=m2_H158_coadd)
        coadd_H = psc.Coadder(obs_Hlist, flat_wcs=True).coadd_obs
        coadd_H.psf.image[
            coadd_H.psf.image < 0] = 0  # set negative pixels to zero.
        coadd_H.set_meta({'offset_pixels': None, 'file_id': None})

        obs_Jlist, psf_Jlist, included_J, w_J = get_exp_list_coadd(
            m_J129, ii, m2=m2_J129_coadd)
        coadd_J = psc.Coadder(obs_Jlist, flat_wcs=True).coadd_obs
        coadd_J.psf.image[
            coadd_J.psf.image < 0] = 0  # set negative pixels to zero.
        coadd_J.set_meta({'offset_pixels': None, 'file_id': None})

        obs_Flist, psf_Flist, included_F, w_F = get_exp_list_coadd(
            m_F184, ii, m2=m2_F184_coadd)
        coadd_F = psc.Coadder(obs_Flist, flat_wcs=True).coadd_obs
        coadd_F.psf.image[
            coadd_F.psf.image < 0] = 0  # set negative pixels to zero.
        coadd_F.set_meta({'offset_pixels': None, 'file_id': None})

        coadd = [coadd_H, coadd_J, coadd_F]
        mb_obs_list = MultiBandObsList()

        #coadd = [coadd_H]
        for band in range(3):
            obs_list = ObsList()
            new_coadd_psf_block = block_reduce(coadd[band].psf.image,
                                               block_size=(4, 4),
                                               func=np.sum)
            new_coadd_psf_jacob = Jacobian(
                row=15.5,
                col=15.5,
                dvdrow=(coadd[band].psf.jacobian.dvdrow * oversample),
                dvdcol=(coadd[band].psf.jacobian.dvdcol * oversample),
                dudrow=(coadd[band].psf.jacobian.dudrow * oversample),
                dudcol=(coadd[band].psf.jacobian.dudcol * oversample))
            coadd_psf_obs = Observation(new_coadd_psf_block,
                                        jacobian=new_coadd_psf_jacob,
                                        meta={
                                            'offset_pixels': None,
                                            'file_id': None
                                        })
            coadd[band].psf = coadd_psf_obs
            obs_list.append(coadd[band])
            mb_obs_list.append(obs_list)

        iteration = 0
        for key in metacal_keys:
            res_tot[iteration]['ind'][i] = ind
            res_tot[iteration]['ra'][i] = t['ra']
            res_tot[iteration]['dec'][i] = t['dec']
            iteration += 1

        #print(i, t['size'], mb_obs_list[0][0].image.sum(), mb_obs_list[1][0].image.sum(), mb_obs_list[2][0].image.sum())
        res_ = measure_shape_metacal_multiband(
            mb_obs_list,
            t['size'],
            method='bootstrap',
            fracdev=t['bflux'],
            use_e=[t['int_e1'], t['int_e2']])
        iteration = 0
        for key in metacal_keys:
            if res_ == 0:
                res_tot[iteration]['ind'][i] = 0
            elif res_[key]['flags'] == 0:
                res_tot[iteration]['coadd_px'][i] = res_[key]['pars'][0]
                res_tot[iteration]['coadd_py'][i] = res_[key]['pars'][1]
                res_tot[iteration]['coadd_snr'][i] = res_[key]['s2n']
                res_tot[iteration]['coadd_e1'][i] = res_[key]['pars'][2]
                res_tot[iteration]['coadd_e2'][i] = res_[key]['pars'][3]
                res_tot[iteration]['coadd_hlr'][i] = res_[key]['pars'][4]
            iteration += 1

    mask = res_tot[0]['ind'] != 0
    print(len(res_tot[0]), len(res_tot[0][mask]))
    #print(res_['noshear'].dtype.names)
    print('done')
コード例 #21
0
def get_exp_list(gal, psf, offsets, sky_stamp, psf2=None):
    #def get_exp_list(gal, psf, sky_stamp, psf2=None):

    if psf2 is None:
        psf2 = psf

    obs_list = ObsList()
    psf_list = ObsList()

    w = []
    for i in range(len(gal)):
        im = gal[i].array
        im_psf = psf[i].array
        im_psf2 = psf2[i].array
        weight = 1 / sky_stamp[i].array

        jacob = gal[i].wcs.jacobian()
        dx = offsets[i].x
        dy = offsets[i].y

        gal_jacob = Jacobian(row=gal[i].true_center.y + dy,
                             col=gal[i].true_center.x + dx,
                             dvdrow=jacob.dvdy,
                             dvdcol=jacob.dvdx,
                             dudrow=jacob.dudy,
                             dudcol=jacob.dudx)
        #gal_jacob = Jacobian(
        #    row=gal[i].true_center.x+dx,
        #    col=gal[i].true_center.y+dy,
        #    dvdrow=jacob.dudx,
        #    dvdcol=jacob.dudy,
        #    dudrow=jacob.dvdx,
        #    dudcol=jacob.dvdy)
        psf_jacob2 = gal_jacob

        mask = np.where(weight != 0)
        w.append(np.mean(weight[mask]))
        noise = old_div(np.ones_like(weight), w[-1])

        psf_obs = Observation(im_psf,
                              jacobian=gal_jacob,
                              meta={
                                  'offset_pixels': None,
                                  'file_id': None
                              })
        psf_obs2 = Observation(im_psf2,
                               jacobian=psf_jacob2,
                               meta={
                                   'offset_pixels': None,
                                   'file_id': None
                               })
        obs = Observation(im,
                          weight=weight,
                          jacobian=gal_jacob,
                          psf=psf_obs,
                          meta={
                              'offset_pixels': None,
                              'file_id': None
                          })
        obs.set_noise(noise)

        obs_list.append(obs)
        psf_list.append(psf_obs2)

    #print(obs_list)
    return obs_list, psf_list, np.array(w)