コード例 #1
0
ファイル: video_c3d.py プロジェクト: rsumner31/ngraph
def create_network():
    '''
    Define 3D convolutional network
    '''

    # Define for weight initialization
    g1 = GaussianInit(mean=0., var=0.01)
    g5 = GaussianInit(mean=0., var=0.005)
    c0 = ConstantInit(val=0.)
    c1 = ConstantInit(val=1.)
    ax.Y.length = 101

    padding = {'D': 1, 'H': 1, 'W': 1, 'C': 0}
    strides = {'D': 2, 'H': 2, 'W': 2, 'C': 1}

    layers = [
        Convolution((3, 3, 3, 64),
                    padding=padding,
                    filter_init=g1,
                    bias_init=c0,
                    activation=Rectlin()),
        Pooling((1, 2, 2), strides={
            'D': 1,
            'H': 2,
            'W': 2,
            'C': 1
        }),
        Convolution((3, 3, 3, 128),
                    padding=padding,
                    filter_init=g1,
                    bias_init=c1,
                    activation=Rectlin()),
        Pooling((2, 2, 2), strides=strides),
        Convolution((3, 3, 3, 256),
                    padding=padding,
                    filter_init=g1,
                    bias_init=c1,
                    activation=Rectlin()),
        Pooling((2, 2, 2), strides=strides),
        Convolution((3, 3, 3, 256),
                    padding=padding,
                    filter_init=g1,
                    bias_init=c1,
                    activation=Rectlin()),
        Pooling((2, 2, 2), strides=strides),
        Convolution((3, 3, 3, 256),
                    padding=padding,
                    filter_init=g1,
                    bias_init=c1,
                    activation=Rectlin()),
        Pooling((2, 2, 2), strides=strides),
        Affine(nout=2048, weight_init=g5, bias_init=c1, activation=Rectlin()),
        Dropout(keep=0.5),
        Affine(nout=2048, weight_init=g5, bias_init=c1, activation=Rectlin()),
        Dropout(keep=0.5),
        Affine(axes=ax.Y, weight_init=g1, bias_init=c0, activation=Softmax())
    ]

    return Sequential(layers)
コード例 #2
0
ファイル: inception.py プロジェクト: leonllm/ngraph
    def __init__(self,
                 branch_units=[(192, 320), (192, 192, 192, 192)],
                 name=None):
        """
        Fourth inception block with three branches, concatenated in the end
            1. 1x1 conv, 3x3 conv (stride=2, valid)
            2. 1x1 conv, 1x7 conv, 7x1 conv, 3x3 conv (stride=2, valid)
            3. 3x3 pool (stride=2, valid)
            Convolution(H, W, K) : height, width, number of filters
        Mixed_7a layer
        """
        (p1, p2) = branch_units
        branch1 = Sequential([
            Convolution(name=name + '_br1_conv1x1',
                        **conv_params(filter_shape=(1, 1, p1[0]))),
            Convolution(name=name + '_br1_conv3x3',
                        **conv_params(filter_shape=(3, 3, p1[1]),
                                      strides=2,
                                      padding=0))
        ])

        branch2 = Sequential([
            Convolution(name=name + '_br2_conv1x1',
                        **conv_params(filter_shape=(1, 1, p2[0]))),
            Convolution(name=name + '_br2_conv1x7',
                        **conv_params(filter_shape=(1, 7, p2[1]),
                                      padding={
                                          'H': 0,
                                          'W': 3,
                                          'D': 0
                                      })),
            Convolution(name=name + '_br2_conv7x1',
                        **conv_params(filter_shape=(7, 1, p2[2]),
                                      padding={
                                          'H': 3,
                                          'W': 0,
                                          'D': 0
                                      })),
            Convolution(name=name + '_br2_conv3x3',
                        **conv_params(filter_shape=(3, 3, p2[3]),
                                      strides=2,
                                      padding=0))
        ])

        branch3 = Pooling(name=name + '_br3_maxpool',
                          pool_shape=(3, 3),
                          padding=0,
                          strides=2,
                          pool_type="max")
        branches = [branch1, branch2, branch3]
        super(Inceptionv3_b4, self).__init__(name=name,
                                             branches=branches,
                                             mode='concat')
コード例 #3
0
ファイル: inception.py プロジェクト: leonllm/ngraph
    def __init__(self,
                 branch_units=[(64, ), (48, 64), (64, 96, 96), (64, )],
                 name=None):
        """
        First inception block with four branches, concatenated in the end
            1. 1x1 conv
            2. 1x1 conv, 5x5 conv
            3. 1x1 conv, 3x3conv, 3x3 conv
            4. 3x3 pool, 1x1 conv
        Convolution(H, W, K) : height, width, number of filters
        Mixed_5b, Mixed_5c, Mixed_5d layers
        """
        (p1, p2, p3, p4) = branch_units

        branch1 = Convolution(name=name + '_br1_1x1conv',
                              **conv_params(filter_shape=(1, 1, p1[0])))

        branch2 = Sequential([
            Convolution(name=name + '_br2_1x1conv',
                        **conv_params(filter_shape=(1, 1, p2[0]))),
            Convolution(name=name + '_br2_5x5conv',
                        **conv_params(filter_shape=(5, 5, p2[1]), padding=2))
        ])

        branch3 = Sequential([
            Convolution(name=name + '_br3_1x1conv',
                        **conv_params(filter_shape=(1, 1, p3[0]))),
            Convolution(name=name + '_br3_3x3conv1',
                        **conv_params(filter_shape=(3, 3, p3[1]), padding=1)),
            Convolution(name=name + '_br3_3x3conv2',
                        **conv_params(filter_shape=(3, 3, p3[2]), padding=1))
        ])

        branch4 = Sequential([
            Pooling(name=name + '_br4_avgpool',
                    pool_shape=(3, 3),
                    padding=1,
                    strides=1,
                    pool_type="avg"),
            Convolution(name=name + '_br4_conv1x1',
                        **conv_params(filter_shape=(1, 1, p4[0])))
        ])

        branches = [branch1, branch2, branch3, branch4]
        super(Inceptionv3_b1, self).__init__(name=name,
                                             branches=branches,
                                             mode='concat')
コード例 #4
0
    def __init__(self,
                 inputs,
                 dataset,
                 stage_depth,
                 batch_norm=False,
                 activation=False,
                 preprocess=False):
        nfms = [
            2**(stage + 4) for stage in sorted(list(range(3)) * stage_depth)
        ]
        strides = [
            1 if cur == prev else 2 for cur, prev in zip(nfms[1:], nfms[:-1])
        ]
        layers = []
        if preprocess and dataset == 'cifar10':
            layers = Preprocess(functor=cifar_mean_subtract)
        layers.append(Convolution(**conv_params(3, 16, batch_norm=batch_norm)))
        layers.append(f_module(nfms[0], first=True, batch_norm=batch_norm))

        for nfm, stride in zip(nfms[1:], strides):
            layers.append(f_module(nfm, strides=stride, batch_norm=batch_norm))

        if batch_norm:
            layers.append(BatchNorm())
        if activation:
            layers.append(Activation(Rectlin()))

        layers.append(Pooling((8, 8), strides=2, pool_type='avg'))
        if dataset == 'cifar10':
            ax.Y.length = 10
            layers.append(
                Affine(axes=ax.Y,
                       weight_init=KaimingInit(),
                       batch_norm=batch_norm,
                       activation=Softmax()))
        elif dataset == 'i1k':
            ax.Y.length = 1000
            layers.append(
                Affine(axes=ax.Y,
                       weight_init=KaimingInit(),
                       batch_norm=batch_norm,
                       activation=Softmax()))
        else:
            raise ValueError("Incorrect dataset provided")
        super(mini_residual_network, self).__init__(layers=layers)
コード例 #5
0
    def __init__(self, stage_depth):
        nfms = [2**(stage + 4) for stage in sorted(list(range(3)) * stage_depth)]
        print(nfms)
        strides = [1 if cur == prev else 2 for cur, prev in zip(nfms[1:], nfms[:-1])]

        layers = [Preprocess(functor=cifar_mean_subtract),
                  Convolution(**conv_params(3, 16)),
                  f_module(nfms[0], first=True)]

        for nfm, stride in zip(nfms[1:], strides):
            layers.append(f_module(nfm, strides=stride))

        layers.append(BatchNorm())
        layers.append(Activation(Rectlin()))
        layers.append(Pooling((8, 8), pool_type='avg'))
        layers.append(Affine(axes=ax.Y,
                             weight_init=KaimingInit(),
                             activation=Softmax()))
        super(residual_network, self).__init__(layers=layers)
コード例 #6
0
ファイル: char_conv.py プロジェクト: rsumner31/ngraph
def make_layers(use_large, vocab_size):

    if use_large:
        init = GaussianInit(0., 0.02)
    else:
        init = GaussianInit(0., 0.05)

    layers = []
    layers.append(make_embedding_layer(vocab_size))
    layers.append(lambda op: ng.map_roles(op, {'REC': 'W', 'F': 'C'}))

    kernel_sizes = [7, 7, 3, 3, 3, 3]
    pool_layer_idxs = [0, 1, 5]
    conv_nout = 1024 if use_large else 256
    fc_nout = 2048 if use_large else 1024
    for i in range(6):
        conv_layer = Convolution(
            **conv_params(kernel_sizes[i], conv_nout, init))
        layers.append(conv_layer)
        if i in pool_layer_idxs:
            pool_layer = Pooling(pool_shape=(3, ), strides=3)
            layers.append(pool_layer)
    layers.append(
        Affine(nout=fc_nout,
               weight_init=init,
               bias_init=ConstantInit(0.),
               activation=Rectlin()))
    layers.append(Dropout(keep=0.5))
    layers.append(
        Affine(nout=fc_nout,
               weight_init=init,
               bias_init=ConstantInit(0.),
               activation=Rectlin()))
    layers.append(Dropout(keep=0.5))
    layers.append(
        Affine(axes=(ax.Y, ),
               weight_init=init,
               bias_init=ConstantInit(0.),
               activation=Softmax()))

    return layers
コード例 #7
0
    def __init__(self,
                 branch_units,
                 activation=Rectlin(),
                 bias_init=UniformInit(low=-0.08, high=0.08),
                 filter_init=XavierInit()):

        (p1, p2, p3, p4) = branch_units

        self.branch_1 = Convolution((1, 1, p1[0]),
                                    activation=activation,
                                    bias_init=bias_init,
                                    filter_init=filter_init)
        self.branch_2 = [
            Convolution((1, 1, p2[0]),
                        activation=activation,
                        bias_init=bias_init,
                        filter_init=filter_init),
            Convolution((3, 3, p2[1]),
                        activation=activation,
                        bias_init=bias_init,
                        filter_init=filter_init,
                        padding=1)
        ]
        self.branch_3 = [
            Convolution((1, 1, p3[0]),
                        activation=activation,
                        bias_init=bias_init,
                        filter_init=filter_init),
            Convolution((5, 5, p3[1]),
                        activation=activation,
                        bias_init=bias_init,
                        filter_init=filter_init,
                        padding=2)
        ]
        self.branch_4 = [
            Pooling(pool_shape=(3, 3), padding=1, strides=1, pool_type="max"),
            Convolution((1, 1, p3[0]),
                        activation=activation,
                        bias_init=bias_init,
                        filter_init=filter_init)
        ]
コード例 #8
0
ファイル: inception.py プロジェクト: leonllm/ngraph
    def __init__(self, branch_units=[(384, ), (64, 96, 96)], name=None):
        """
        Second inception block with three branches, concatenated in the end
            1. 3x3 conv (stride = 2, valid)
            2. 1x1 conv, 3x3 conv, 3x3 conv (stride=2, valid)
            3. 3x3 pool (stride = 2, valid)
        Convolution(H, W, K) : height, width, number of filters
        Mixed_6a layer
        """
        (p1, p2) = branch_units

        branch1 = Convolution(name=name + '_br1_3x3conv',
                              **conv_params(filter_shape=(3, 3, p1[0]),
                                            strides=2,
                                            padding=0))

        branch2 = Sequential([
            Convolution(name=name + '_br2_1x1conv',
                        **conv_params(filter_shape=(1, 1, p2[0]))),
            Convolution(name=name + '_br2_3x3conv1',
                        **conv_params(filter_shape=(3, 3, p2[1]), padding=1)),
            Convolution(name=name + '_br2_3x3conv2',
                        **conv_params(filter_shape=(3, 3, p2[2]),
                                      strides=2,
                                      padding=0))
        ])

        branch3 = Pooling(pool_shape=(3, 3),
                          padding=0,
                          strides=2,
                          pool_type="max",
                          name=name + '_br3_maxpool')

        branches = [branch1, branch2, branch3]
        super(Inceptionv3_b2, self).__init__(name=name,
                                             branches=branches,
                                             mode='concat')
コード例 #9
0
 def __init__(self, net_type, resnet_size, bottleneck, num_resnet_mods):
     # For CIFAR10 dataset
     if net_type == 'cifar10':
         # Number of Filters
         num_fils = [16, 32, 64]
         # Network Layers
         layers = [
             # Subtracting mean as suggested in paper
             Preprocess(functor=cifar10_mean_subtract),
             # First Conv with 3x3 and stride=1
             Convolution(**conv_params(3, 16))
         ]
         first_resmod = True  # Indicates the first residual module
         # Loop 3 times for each filter.
         for fil in range(3):
             # Lay out n residual modules so that we have 2n layers.
             for resmods in range(num_resnet_mods):
                 if (resmods == 0):
                     if (first_resmod):
                         # Strides=1 and Convolution side path
                         main_path, side_path = self.get_mp_sp(
                             num_fils[fil], net_type, direct=False)
                         layers.append(ResidualModule(main_path, side_path))
                         layers.append(Activation(Rectlin()))
                         first_resmod = False
                     else:
                         # Strides=2 and Convolution side path
                         main_path, side_path = self.get_mp_sp(
                             num_fils[fil],
                             net_type,
                             direct=False,
                             strides=2)
                         layers.append(ResidualModule(main_path, side_path))
                         layers.append(Activation(Rectlin()))
                 else:
                     # Strides=1 and direct connection
                     main_path, side_path = self.get_mp_sp(
                         num_fils[fil], net_type)
                     layers.append(ResidualModule(main_path, side_path))
                     layers.append(Activation(Rectlin()))
         # Do average pooling --> fully connected--> softmax.
         layers.append(Pooling([8, 8], pool_type='avg'))
         layers.append(
             Affine(axes=ax.Y, weight_init=KaimingInit(), batch_norm=True))
         layers.append(Activation(Softmax()))
     # For I1K dataset
     elif net_type == "i1k":
         # Number of Filters
         num_fils = [64, 128, 256, 512]
         # Number of residual modules we need to instantiate at each level
         num_resnet_mods = num_i1k_resmods(resnet_size)
         # Network layers
         layers = [
             # Subtracting mean
             Preprocess(functor=i1k_mean_subtract),
             # First Conv layer
             Convolution((7, 7, 64),
                         strides=2,
                         padding=3,
                         batch_norm=True,
                         activation=Rectlin(),
                         filter_init=KaimingInit()),
             # Max Pooling
             Pooling([3, 3], strides=2, pool_type='max', padding=1)
         ]
         first_resmod = True  # Indicates the first residual module for which strides are 1
         # Loop 4 times for each filter
         for fil in range(4):
             # Lay out residual modules as in num_resnet_mods list
             for resmods in range(num_resnet_mods[fil]):
                 if (resmods == 0):
                     if (first_resmod):
                         # Strides=1 and Convolution Side path
                         main_path, side_path = self.get_mp_sp(
                             num_fils[fil],
                             net_type,
                             direct=False,
                             bottleneck=bottleneck)
                         layers.append(ResidualModule(main_path, side_path))
                         layers.append(Activation(Rectlin()))
                         first_resmod = False
                     else:
                         # Strides=2 and Convolution side path
                         main_path, side_path = self.get_mp_sp(
                             num_fils[fil],
                             net_type,
                             direct=False,
                             bottleneck=bottleneck,
                             strides=2)
                         layers.append(ResidualModule(main_path, side_path))
                         layers.append(Activation(Rectlin()))
                 else:
                     # Strides=1 and direct connection
                     main_path, side_path = self.get_mp_sp(
                         num_fils[fil], net_type, bottleneck=bottleneck)
                     layers.append(ResidualModule(main_path, side_path))
                     layers.append(Activation(Rectlin()))
         # Do average pooling --> fully connected--> softmax.
         layers.append(Pooling([7, 7], pool_type='avg'))
         layers.append(
             Affine(axes=ax.Y, weight_init=KaimingInit(), batch_norm=True))
         layers.append(Activation(Softmax()))
     else:
         raise NameError(
             "Incorrect dataset. Should be --dataset cifar10 or --dataset i1k"
         )
     super(BuildResnet, self).__init__(layers=layers)
コード例 #10
0
ファイル: inception.py プロジェクト: leonllm/ngraph
    def __init__(self, mini=False):
        """
        Builds Inception model based on:
        https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py
        """
        # Input size is 299 x 299 x 3
        if mini:
            """
            This is the mini model with reduced number of filters in each layer
            """
            # Root branch of the tree
            seq1 = Sequential([
                Convolution(name='conv_1a_3x3',
                            **conv_params(filter_shape=(3, 3, 32),
                                          padding=0,
                                          strides=2)),
                # conv2d_1a_3x3
                Convolution(name='conv_2a_3x3',
                            **conv_params(filter_shape=(3, 3, 16), padding=0)),
                # conv2d_2a_3x3
                Convolution(name='conv_2b_3x3',
                            **conv_params(filter_shape=(3, 3, 16), padding=1)),
                # conv2d_2b_3x3
                Pooling(name='pool_1_3x3',
                        pool_shape=(3, 3),
                        padding=0,
                        strides=2,
                        pool_type='max'),  # maxpool_3a_3x3
                Convolution(name='conv_3b_1x1',
                            **conv_params(filter_shape=(1, 1, 16))),
                # conv2d_3b_1x1
                Convolution(name='conv_4a_3x3',
                            **conv_params(filter_shape=(3, 3, 32), padding=1)),
                # conv2d_4a_3x3
                Pooling(name='pool_2_3x3',
                        pool_shape=(3, 3),
                        padding=0,
                        strides=2,
                        pool_type='max'),  # maxpool_5a_3x3
                Inceptionv3_b1([(32, ), (32, 32), (32, 32, 32), (32, )],
                               name='mixed_5b'),
                Inceptionv3_b1([(32, ), (32, 32), (32, 32, 32), (32, )],
                               name='mixed_5c'),
                Inceptionv3_b1([(32, ), (32, 32), (32, 32, 32), (32, )],
                               name=' mixed_5d'),
                Inceptionv3_b2([(32, ), (32, 32, 32)], name=' mixed_6a'),
                Inceptionv3_b3([(32, ), (32, 32, 32), (32, 32, 32, 32, 32),
                                (32, )],
                               name='mixed_6b'),
                Inceptionv3_b3([(32, ), (32, 32, 32), (32, 32, 32, 32, 32),
                                (32, )],
                               name='mixed_6c'),
                Inceptionv3_b3([(32, ), (32, 32, 32), (32, 32, 32, 32, 32),
                                (32, )],
                               name='mixed_6d'),
                Inceptionv3_b3([(32, ), (32, 32, 32), (32, 32, 32, 32, 32),
                                (32, )],
                               name='mixed_6e')
            ])

            # Branch of main classifier
            seq2 = Sequential([
                Inceptionv3_b4([(32, 32), (32, 32, 32, 32)], name='mixed_7a'),
                Inceptionv3_b5([(32, ), (32, 32, 32), (32, 32, 32, 32),
                                (32, )],
                               name='mixed_7b'),
                Inceptionv3_b5([(32, ), (32, 32, 32), (32, 32, 32, 32),
                                (32, )],
                               name='mixed_7c'),
                Pooling(pool_shape=(8, 8),
                        padding=0,
                        strides=2,
                        pool_type='avg'),
                # Last Avg Pool
                Dropout(keep=0.8),
                Convolution(name='main_final_conv1x1',
                            **conv_params(filter_shape=(1, 1, 1000),
                                          activation=Softmax(),
                                          batch_norm=False))
            ])

            # Auxiliary classifier
            seq_aux = Sequential([
                Pooling(pool_shape=(5, 5),
                        padding=0,
                        strides=3,
                        pool_type='avg'),
                Convolution(name='aux_conv1x1_v1',
                            **conv_params(filter_shape=(1, 1, 32))),
                Convolution(name='aux_conv5x5',
                            **conv_params(filter_shape=(5, 5, 32))),
                Convolution(name='aux_conv1x1_v2',
                            **conv_params(filter_shape=(1, 1, 1000),
                                          activation=Softmax(),
                                          batch_norm=False))
            ])

        else:
            # Root branch of the tree
            seq1 = Sequential([
                Convolution(name='conv_1a_3x3',
                            **conv_params(filter_shape=(3, 3, 32),
                                          padding=0,
                                          strides=2)),
                # conv2d_1a_3x3
                Convolution(name='conv_2a_3x3',
                            **conv_params(filter_shape=(3, 3, 32), padding=0)),
                # conv2d_2a_3x3
                Convolution(name='conv_2b_3x3',
                            **conv_params(filter_shape=(3, 3, 64), padding=1)),
                # conv2d_2b_3x3
                Pooling(name='pool_1_3x3',
                        pool_shape=(3, 3),
                        padding=0,
                        strides=2,
                        pool_type='max'),  # maxpool_3a_3x3
                Convolution(name='conv_3b_1x1',
                            **conv_params(filter_shape=(1, 1, 80))),
                # conv2d_3b_1x1
                Convolution(name='conv_4a_3x3',
                            **conv_params(filter_shape=(3, 3, 192),
                                          padding=1)),
                # conv2d_4a_3x3
                Pooling(name='pool_2_3x3',
                        pool_shape=(3, 3),
                        padding=0,
                        strides=2,
                        pool_type='max'),  # maxpool_5a_3x3
                Inceptionv3_b1([(64, ), (48, 64), (64, 96, 96), (32, )],
                               name='mixed_5b'),
                Inceptionv3_b1([(64, ), (48, 64), (64, 96, 96), (64, )],
                               name='mixed_5c'),
                Inceptionv3_b1([(64, ), (48, 64), (64, 96, 96), (64, )],
                               name=' mixed_5d'),
                Inceptionv3_b2([(384, ), (64, 96, 96)], name=' mixed_6a'),
                Inceptionv3_b3([(192, ), (128, 128, 192),
                                (128, 128, 128, 128, 192), (192, )],
                               name='mixed_6b'),
                Inceptionv3_b3([(192, ), (160, 160, 192),
                                (160, 160, 160, 160, 192), (192, )],
                               name='mixed_6c'),
                Inceptionv3_b3([(192, ), (160, 160, 192),
                                (160, 160, 160, 160, 192), (192, )],
                               name='mixed_6d'),
                Inceptionv3_b3([(192, ), (192, 192, 192),
                                (192, 192, 192, 192, 192), (192, )],
                               name='mixed_6e')
            ])

            # Branch of main classifier
            seq2 = [
                Inceptionv3_b4([(192, 320), (192, 192, 192, 192)],
                               name='mixed_7a'),
                Inceptionv3_b5([(320, ), (384, 384, 384), (448, 384, 384, 384),
                                (192, )],
                               name='mixed_7b'),
                Inceptionv3_b5([(320, ), (384, 384, 384), (448, 384, 384, 384),
                                (192, )],
                               name='mixed_7c'),
                Pooling(pool_shape=(8, 8),
                        padding=0,
                        strides=2,
                        pool_type='avg'),
                # Last Avg Pool
                Dropout(keep=0.8),
                Convolution(name='main_final_conv1x1',
                            **conv_params(filter_shape=(1, 1, 1000),
                                          activation=Softmax(),
                                          batch_norm=False))
            ]
            seq2 = Sequential(seq2)

            # Auxiliary classifier
            my_seq = [
                Pooling(pool_shape=(5, 5),
                        padding=0,
                        strides=3,
                        pool_type='avg'),
                Convolution(name='aux_conv1x1_v1',
                            **conv_params(filter_shape=(1, 1, 128))),
                Convolution(name='aux_conv5x5',
                            **conv_params(filter_shape=(5, 5, 768))),
                Convolution(name='aux_conv1x1_v2',
                            **conv_params(filter_shape=(1, 1, 1000),
                                          activation=Softmax(),
                                          batch_norm=False))
            ]
            seq_aux = Sequential(my_seq)

        self.seq1 = seq1
        self.seq2 = seq2
        self.seq_aux = seq_aux
コード例 #11
0
ファイル: inception.py プロジェクト: leonllm/ngraph
    def __init__(self,
                 branch_units=[(320, ), (384, 384, 384), (448, 384, 384, 384),
                               (192, )],
                 name=None):
        """
        Fifth inception block with four branches, concatenated in the end
            1. 1x1 conv
            2. 1x1 conv, followed by two sub-branches [1x3 conv, 3x1 conv]
            3. 1x1 conv, 3x3 conv, followed by two sub-branches [1x3 conv, 3x1 conv]
            4. 3x3 pool, 1x1 conv
            Convolution(H, W, K) : height, width, number of filters
        Mixed_7b, Mixed_7c layers
        """
        (p1, p2, p3, p4) = branch_units

        # Branch 1
        branch1 = Convolution(name=name + '_br1_conv1x1',
                              **conv_params(filter_shape=(1, 1, p1[0])))

        # Branch 2
        branch2a1_params = conv_params(filter_shape=(1, 3, p2[1]),
                                       padding={
                                           'H': 0,
                                           'W': 1,
                                           'D': 0
                                       })
        branch2a2_params = conv_params(filter_shape=(3, 1, p2[2]),
                                       padding={
                                           'H': 1,
                                           'W': 0,
                                           'D': 0
                                       })
        # This is the sub-branch with two parallel branches of 1x3 and 3x1
        branch2a = Parallel([
            Convolution(name=name + '_br2a_conv1x3', **branch2a1_params),
            Convolution(name=name + '_br2a_conv3x1', **branch2a2_params)
        ])
        branch2 = Sequential([
            Convolution(name=name + '_br2_conv1x1',
                        **conv_params(filter_shape=(1, 1, p2[0]))), branch2a
        ])

        # Branch 3
        branch3a1_params = conv_params(filter_shape=(1, 3, p3[2]),
                                       padding={
                                           'H': 0,
                                           'W': 1,
                                           'D': 0
                                       })
        branch3a2_params = conv_params(filter_shape=(3, 1, p3[3]),
                                       padding={
                                           'H': 1,
                                           'W': 0,
                                           'D': 0
                                       })
        branch3a = Parallel([
            Convolution(name=name + '_br3_conv1x3', **branch3a1_params),
            Convolution(name=name + '_br3_conv3x1', **branch3a2_params)
        ])
        branch3 = Sequential([
            Convolution(name=name + '_br3_conv1x1',
                        **conv_params(filter_shape=(1, 1, p3[0]))),
            Convolution(name=name + '_br3_conv3x3',
                        **conv_params(filter_shape=(3, 3, p3[1]), padding=1)),
            branch3a
        ])

        # Branch 4
        branch4 = Sequential([
            Pooling(name=name + '_br4_avgpool',
                    pool_shape=(3, 3),
                    padding=1,
                    strides=1,
                    pool_type="avg"),
            Convolution(name=name + '_br4_conv1x1',
                        **conv_params(filter_shape=(1, 1, p4[0])))
        ])

        # Combine branches
        branches = [branch1, branch2, branch3, branch4]
        super(Inceptionv3_b5, self).__init__(name=name,
                                             branches=branches,
                                             mode='concat')
コード例 #12
0
ファイル: inception.py プロジェクト: leonllm/ngraph
    def __init__(self,
                 branch_units=[(192), (160, 160, 192),
                               (160, 160, 160, 160, 192), (192, )],
                 name=None):
        """
        Third inception block with four branches, concatenated in the end
            1. 1x1 conv
            2. 1x1 conv, 1x7 conv, 7x1 conv
            3. 1x1 conv, 7x1 conv, 1x7 conv, 7x1 conv, 1x7 conv
            4. 3x3 pool, 1x1 conv
            Convolution(H, W, K) : height, width, number of filters
        Mixed_6b, Mixed_6c, Mixed_6c, Mixed_6d, Mixed_6e layers
        """
        (p1, p2, p3, p4) = branch_units
        branch1 = Convolution(name=name + '_br1_1x1conv',
                              **conv_params(filter_shape=(1, 1, p1[0])))

        branch2 = Sequential([
            Convolution(name=name + '_br2_1x1conv',
                        **conv_params(filter_shape=(1, 1, p2[0]))),
            Convolution(name=name + '_br2_1x7conv',
                        **conv_params(filter_shape=(1, 7, p2[1]),
                                      padding={
                                          'H': 0,
                                          'W': 3,
                                          'D': 0
                                      })),
            Convolution(name=name + '_br27x1conv',
                        **conv_params(filter_shape=(7, 1, p2[2]),
                                      padding={
                                          'H': 3,
                                          'W': 0,
                                          'D': 0
                                      }))
        ])

        branch3 = Sequential([
            Convolution(name=name + '_br3_1x1conv',
                        **conv_params(filter_shape=(1, 1, p3[0]))),
            Convolution(name=name + '_br3_7x1conv1',
                        **conv_params(filter_shape=(7, 1, p3[1]),
                                      padding={
                                          'H': 3,
                                          'W': 0,
                                          'D': 0
                                      })),
            Convolution(name=name + '_br3_1x7conv1',
                        **conv_params(filter_shape=(1, 7, p3[2]),
                                      padding={
                                          'H': 0,
                                          'W': 3,
                                          'D': 0
                                      })),
            Convolution(name=name + '_br3_7x1conv2',
                        **conv_params(filter_shape=(7, 1, p3[3]),
                                      padding={
                                          'H': 3,
                                          'W': 0,
                                          'D': 0
                                      })),
            Convolution(name=name + '_br3_1x7conv2',
                        **conv_params(filter_shape=(1, 7, p3[4]),
                                      padding={
                                          'H': 0,
                                          'W': 3,
                                          'D': 0
                                      }))
        ])

        branch4 = Sequential([
            Pooling(name=name + '_br4_avgpool',
                    pool_shape=(3, 3),
                    padding=1,
                    strides=1,
                    pool_type="avg"),
            Convolution(name=name + '_br4_1x1conv',
                        **conv_params(filter_shape=(1, 1, p4[0])))
        ])
        branches = [branch1, branch2, branch3, branch4]
        super(Inceptionv3_b3, self).__init__(name=name,
                                             branches=branches,
                                             mode='concat')
コード例 #13
0
ファイル: vgg_a.py プロジェクト: rsumner31/ngraph
                          batch_size=args.batch_size,
                          total_iterations=args.num_iterations)
inputs = train_set.make_placeholders(include_iteration=True)
ax.Y.length = 1000  # number of outputs of last layer.

# weight initialization
init = UniformInit(low=-0.08, high=0.08)

# Setup model
seq1 = Sequential([
    Convolution((3, 3, 64),
                filter_init=GaussianInit(std=0.01),
                bias_init=init,
                activation=Rectlin(),
                padding=1),
    Pooling((2, 2), strides=2),
    Convolution((3, 3, 128),
                filter_init=GaussianInit(std=0.01),
                bias_init=init,
                activation=Rectlin(),
                padding=1),
    Pooling((2, 2), strides=2),
    Convolution((3, 3, 256),
                filter_init=GaussianInit(std=0.01),
                bias_init=init,
                activation=Rectlin(),
                padding=1),
    Convolution((3, 3, 256),
                filter_init=GaussianInit(std=0.01),
                bias_init=init,
                activation=Rectlin(),
コード例 #14
0
                          total_iterations=args.num_iterations)
inputs = train_set.make_placeholders(include_iteration=True)
ax.Y.length = 1000  # number of outputs of last layer.

# weight initialization
init = UniformInit(low=-0.08, high=0.08)

# Setup model
seq1 = Sequential([
    Convolution((11, 11, 64),
                filter_init=GaussianInit(var=0.01),
                bias_init=init,
                activation=Rectlin(),
                padding=3,
                strides=4),
    Pooling((3, 3), strides=2),
    Convolution((5, 5, 192),
                filter_init=GaussianInit(var=0.01),
                bias_init=init,
                activation=Rectlin(),
                padding=2),
    Pooling((3, 3), strides=2),
    Convolution((3, 3, 384),
                filter_init=GaussianInit(var=0.03),
                bias_init=init,
                activation=Rectlin(),
                padding=1),
    Convolution((3, 3, 256),
                filter_init=GaussianInit(var=0.03),
                bias_init=init,
                activation=Rectlin(),
コード例 #15
0
        outputs = [
            branch_1_output, branch_2_output, branch_3_output, branch_4_output
        ]
        # This does the equivalent of neon's merge-broadcast
        return ng.concat_along_axis(outputs,
                                    branch_1_output.axes.channel_axis())


seq1 = Sequential([
    Convolution((7, 7, 64),
                padding=3,
                strides=2,
                activation=Rectlin(),
                bias_init=bias_init,
                filter_init=XavierInit()),
    Pooling(pool_shape=(3, 3), padding=1, strides=2, pool_type='max'),
    Convolution((1, 1, 64),
                activation=Rectlin(),
                bias_init=bias_init,
                filter_init=XavierInit()),
    Convolution((3, 3, 192),
                activation=Rectlin(),
                bias_init=bias_init,
                filter_init=XavierInit(),
                padding=1),
    Pooling(pool_shape=(3, 3), padding=1, strides=2, pool_type='max'),
    Inception([(64, ), (96, 128), (16, 32), (32, )]),
    Inception([(128, ), (128, 192), (32, 96), (64, )]),
    Pooling(pool_shape=(3, 3), padding=1, strides=2, pool_type='max'),
    Inception([(192, ), (96, 208), (16, 48), (64, )]),
    Inception([(160, ), (112, 224), (24, 64), (64, )]),