コード例 #1
0
def test_execute_non_placeholder():
    """
    Expect a failure if a non-input (Variable) is used as an argument to
    executor.
    """
    N = ng.make_axis(length=1)

    x = ng.temporary([N])
    y = ng.variable([N])

    with pytest.raises(ValueError):
        with executor(x + y, x, y) as ex:
            ex
コード例 #2
0
    def __call__(self, in_obj, init_state=None):
        """
        Sets shape based parameters of this layer given an input tuple or int
        or input layer.

        Arguments:
            in_obj (int, tuple, Layer or Tensor): object that provides shape
                                                 information for layer
            init_state (tuple of Tensor): object that provides initial state, and in LSTM,
                                          it includes hidden state, and cell states

        Returns:
            rnn_out (Tensor): output

        """
        # try to understand the axes from the input
        if init_state is not None:
            assert len(init_state) == 2 and init_state[0].axes == init_state[1].axes
            self.interpret_axes(in_obj, init_state[0])
        else:
            self.interpret_axes(in_obj, init_state)

        # initialize the hidden states
        if init_state is not None:
            self.h_init = init_state[0]
            self.c_init = init_state[1]
        else:
            if self.reset_cells:
                self.h_init = ng.temporary(initial_value=0,
                                           axes=self.out_axes).named('h_init')
                self.c_init = ng.temporary(initial_value=0,
                                           axes=self.out_axes).named('c_init')
            else:
                self.h_init = ng.variable(initial_value=0,
                                          axes=self.out_axes).named('h_init')
                self.c_init = ng.variable(initial_value=0,
                                          axes=self.out_axes).named('c_init')

        # params are dictionary for i, f, o, g
        self.W_input = {k: ng.variable(axes=self.w_in_axes,
                                       initial_value=self.init,
                                       scope=self.scope).
                        named("W_in_{}".format(k)) for k in self.metadata['gates']}

        self.W_recur = {k: ng.variable(axes=self.w_re_axes,
                                       initial_value=self.init_inner,
                                       scope=self.scope).
                        named("W_re_{}".format(k)) for k in self.metadata['gates']}

        self.b = {k: ng.variable(axes=self.out_feature_axes,
                                 initial_value=0,
                                 scope=self.scope).
                  named("bias_{}".format(k)) for k in self.metadata['gates']}

        h = self.h_init
        c = self.c_init

        h_list = []
        c_list = []

        # Compute feed forward weighted inputs
        # Batch norm is computed only on the weighted inputs
        # as in https://arxiv.org/abs/1510.01378
        h_ff = dict()
        for k in self.metadata["gates"]:
            h_ff[k] = ng.dot(self.W_input[k], in_obj)
            if self.batch_norm is not None:
                h_ff[k] = self.batch_norm[k](h_ff[k])

            # slice the weighted inputs into time slices
        h_ff = get_steps(h_ff, self.recurrent_axis, self.backward)

        # recurrent computation
        for i in range(self.recurrent_axis.length):
            with ng.metadata(recurrent_step=str(i)):
                [h, c] = self._step(h_ff[i], [h, c])
                h_list.append(h)
                c_list.append(c)

        if self.return_sequence is True:
            if self.backward:
                h_list = h_list[::-1]
                c_list = c_list[::-1]
            lstm_out = ng.stack(h_list, self.recurrent_axis, pos=self.recurrent_axis_idx)
        else:
            lstm_out = h_list[-1]

        if self.reset_cells is True:
            return lstm_out
        else:
            return ng.sequential([
                ng.doall([
                    ng.assign(self.h_init, h_list[-1]),
                    ng.assign(self.c_init, c_list[-1])
                ]),
                lstm_out
            ])
コード例 #3
0
ファイル: layer.py プロジェクト: kkasravi/ngraph
    def train_outputs(self, in_obj, init_state=None):
        """
        Sets shape based parameters of this layer given an input tuple or int
        or input layer.

        Arguments:
            in_obj (int, tuple, Layer or Tensor): object that provides shape
                                                 information for layer
            init_state (tuple of Tensor): object that provides initial state, and in LSTM,
                                          it includes hidden state, and cell states

        Returns:
            rnn_out (Tensor): output

        """
        # try to understand the axes from the input
        if init_state is not None:
            assert len(
                init_state) == 2 and init_state[0].axes == init_state[1].axes
            self.interpret_axes(in_obj, init_state[0])
        else:
            self.interpret_axes(in_obj, init_state)

        # initialize the hidden states
        if init_state is not None:
            self.h_init = init_state[0]
            self.c_init = init_state[1]
        else:
            if self.reset_cells:
                self.h_init = ng.temporary(
                    initial_value=0,
                    axes=self.hidden_state_axes).named('h_init')
                self.c_init = ng.temporary(
                    initial_value=0,
                    axes=self.hidden_state_axes).named('c_init')
            else:
                self.h_init = ng.variable(
                    initial_value=0,
                    axes=self.hidden_state_axes).named('h_init')
                self.c_init = ng.variable(
                    initial_value=0,
                    axes=self.hidden_state_axes).named('c_init')

        # params are dictionary for i, f, o, g
        self.W_input = {
            k: ng.variable(axes=self.w_in_axes,
                           initial_value=self.init).named("W_in_{}".format(k))
            for k in self.metadata['gates']
        }

        self.W_recur = {
            k: ng.variable(axes=self.w_re_axes,
                           initial_value=self.init_inner).named(
                               "W_re_{}".format(k))
            for k in self.metadata['gates']
        }

        self.b = {
            k: ng.variable(axes=self.hidden_axes,
                           initial_value=0).named("bias_{}".format(k))
            for k in self.metadata['gates']
        }

        h = self.h_init
        c = self.c_init

        h_list = []
        c_list = []

        # feedforward computation
        in_s = get_steps(in_obj, self.recurrent_axis, self.backward)

        # recurrent computation
        for i in range(self.recurrent_axis.length):
            with ng.metadata(recurrent_step=str(i)):
                [h, c] = self._step(in_s[i], [h, c])
                h_list.append(h)
                c_list.append(c)

        if self.return_sequence is True:
            if self.backward:
                h_list = h_list[::-1]
                c_list = c_list[::-1]
            lstm_out = ng.stack(h_list,
                                self.recurrent_axis,
                                pos=self.recurrent_axis_idx)
        else:
            lstm_out = h_list[-1]

        if self.reset_cells is True:
            return lstm_out
        else:
            return ng.sequential([
                ng.doall([
                    ng.assign(self.h_init, h_list[-1]),
                    ng.assign(self.c_init, c_list[-1])
                ]), lstm_out
            ])