def test_total_stddev_only(self): truncation_level = None numpy.random.seed(37) realizations = 1000 gmfs = ground_motion_fields(self.rupture, self.sites_total, [self.imt2], self.total_stddev_gsim, truncation_level, realizations=realizations, correlation_model=None) intensity = gmfs[self.imt2] assert_allclose((intensity[0].mean(), intensity[0].std()), (self.mean1, self.total1), rtol=4e-2) assert_allclose((intensity[1].mean(), intensity[1].std()), (self.mean2, self.total2), rtol=4e-2) assert_allclose((intensity[2].mean(), intensity[2].std()), (self.mean3, self.total3), rtol=4e-2) assert_allclose((intensity[3].mean(), intensity[3].std()), (self.mean4567, self.total45), rtol=4e-2) assert_allclose((intensity[4].mean(), intensity[4].std()), (self.mean4567, self.total45), rtol=4e-2) assert_allclose((intensity[5].mean(), intensity[5].std()), (self.mean4567, self.total67), rtol=4e-2) assert_allclose((intensity[6].mean(), intensity[6].std()), (self.mean4567, self.total67), rtol=4e-2)
def test_rupture_site_filtering(self): mean = 10 inter = 2 intra = 3 points = [Point(0, 0), Point(0, 0.05)] sites = [Site(point, mean, False, inter, intra) for point in points] self.sites = SiteCollection(sites) def rupture_site_filter(rupture_sites): [(rupture, sites)] = rupture_sites yield rupture, sites.filter(sites.mesh.lats == 0) self.gsim.expect_same_sitecol = False numpy.random.seed(37) cormo = JB2009CorrelationModel(vs30_clustering=False) gmfs = ground_motion_fields( self.rupture, self.sites, [self.imt1], self.gsim, truncation_level=None, realizations=1, correlation_model=cormo, rupture_site_filter=rupture_site_filter ) s1gmf, s2gmf = gmfs[self.imt1] numpy.testing.assert_array_equal(s2gmf, 0) numpy.testing.assert_array_almost_equal(s1gmf, 11.1852253)
def test_no_filtering_no_truncation(self): truncation_level = None numpy.random.seed(3) realizations = 2000 gmfs = ground_motion_fields(self.rupture, self.sites, [self.imt2], self.gsim, truncation_level, realizations=realizations) intensity = gmfs[self.imt2] assert_allclose((intensity[0].mean(), intensity[0].std()), (self.mean1, self.stddev1), rtol=4e-2) assert_allclose((intensity[1].mean(), intensity[1].std()), (self.mean2, self.stddev2), rtol=4e-2) assert_allclose((intensity[2].mean(), intensity[2].std()), (self.mean3, self.stddev3), rtol=4e-2) assert_allclose((intensity[3].mean(), intensity[3].std()), (self.mean4567, self.stddev45), rtol=4e-2) assert_allclose((intensity[4].mean(), intensity[4].std()), (self.mean4567, self.stddev45), rtol=4e-2) assert_allclose((intensity[5].mean(), intensity[5].std()), (self.mean4567, self.stddev67), rtol=4e-2) assert_allclose((intensity[6].mean(), intensity[6].std()), (self.mean4567, self.stddev67), rtol=4e-2) # sites with zero intra-event stddev, should give exactly the same # result, since inter-event distribution is sampled only once assert_array_equal(intensity[5], intensity[6]) self.assertFalse((intensity[3] == intensity[4]).all())
def test_no_correlation_mean_and_intra_respected(self): mean1 = 10 mean2 = 14 inter = 1e-300 intra1 = 0.2 intra2 = 1.6 p1 = Point(0, 0) p2 = Point(0, 0.3) sites = [Site(p1, mean1, False, inter, intra1), Site(p2, mean2, False, inter, intra2)] self.sites = SiteCollection(sites) numpy.random.seed(41) cormo = JB2009CorrelationModel(vs30_clustering=False) lt_corma = cormo.get_lower_triangle_correlation_matrix(self.sites, self.imt1) s1_intensity, s2_intensity = ground_motion_fields( self.rupture, self.sites, [self.imt1], self.gsim, truncation_level=None, realizations=6000, lt_correlation_matrices={self.imt1: lt_corma} )[self.imt1] self.assertAlmostEqual(s1_intensity.mean(), mean1, delta=1e-3) self.assertAlmostEqual(s2_intensity.mean(), mean2, delta=1e-3) self.assertAlmostEqual(s1_intensity.std(), intra1, delta=2e-3) self.assertAlmostEqual(s2_intensity.std(), intra2, delta=1e-2)
def test_filter_all_out(self): def rupture_site_filter(rupture_site): return [] for truncation_level in (None, 0, 1.3): gmfs = ground_motion_fields( self.rupture, self.sites, [self.imt1, self.imt2], self.gsim, truncation_level=truncation_level, realizations=123, rupture_site_filter=rupture_site_filter ) self.assertEqual(gmfs[self.imt1].shape, (7, 123)) self.assertEqual(gmfs[self.imt2].shape, (7, 123)) assert_array_equal(gmfs[self.imt1], 0) assert_array_equal(gmfs[self.imt2], 0)
def test_no_filtering_zero_truncation(self): truncation_level = 0 self.gsim.expect_stddevs = False gmfs = ground_motion_fields(self.rupture, self.sites, [self.imt1, self.imt2], self.gsim, realizations=100, truncation_level=truncation_level) for intensity in gmfs[self.imt1], gmfs[self.imt2]: for i in xrange(7): self.assertEqual(intensity[i].std(), 0) self.assertEqual(intensity[0].mean(), self.mean1) self.assertEqual(intensity[1].mean(), self.mean2) self.assertEqual(intensity[2].mean(), self.mean3) self.assertEqual(intensity[3].mean(), self.mean4567) self.assertEqual(intensity[4].mean(), self.mean4567) self.assertEqual(intensity[5].mean(), self.mean4567) self.assertEqual(intensity[6].mean(), self.mean4567)
def test_no_filtering_with_truncation(self): truncation_level = 1.9 numpy.random.seed(11) realizations = 400 gmfs = ground_motion_fields(self.rupture, self.sites, [self.imt1], self.gsim, realizations=realizations, truncation_level=truncation_level) intensity = gmfs[self.imt1] max_deviation1 = (self.inter1 + self.intra1) * truncation_level max_deviation2 = (self.inter2 + self.intra2) * truncation_level max_deviation3 = (self.inter3 + self.intra3) * truncation_level max_deviation4567 = truncation_level self.assertLessEqual(intensity[0].max(), self.mean1 + max_deviation1) self.assertGreaterEqual(intensity[0].min(), self.mean1 - max_deviation1) self.assertLessEqual(intensity[1].max(), self.mean2 + max_deviation2) self.assertGreaterEqual(intensity[1].min(), self.mean2 - max_deviation2) self.assertLessEqual(intensity[2].max(), self.mean3 + max_deviation3) self.assertGreaterEqual(intensity[2].min(), self.mean3 - max_deviation3) for i in (3, 4, 5, 6): self.assertLessEqual(intensity[i].max(), self.mean4567 + max_deviation4567) self.assertGreaterEqual(intensity[i].min(), self.mean4567 - max_deviation4567) assert_allclose(intensity.mean(axis=1), [self.mean1, self.mean2, self.mean3] + [self.mean4567] * 4, rtol=5e-2) self.assertLess(intensity[0].std(), self.stddev1) self.assertLess(intensity[1].std(), self.stddev2) self.assertLess(intensity[2].std(), self.stddev3) self.assertLess(intensity[3].std(), self.stddev45) self.assertLess(intensity[4].std(), self.stddev45) self.assertLess(intensity[5].std(), self.stddev67) self.assertLess(intensity[6].std(), self.stddev67) for i in xrange(7): self.assertGreater(intensity[i].std(), 0)
def test_no_truncation(self): mean = 10 inter = 1e-300 intra = 3 points = [Point(0, 0), Point(0, 0.05), Point(0.06, 0.025), Point(0, 1.0), Point(-10, -10)] sites = [Site(point, mean, False, inter, intra) for point in points] self.sites = SiteCollection(sites) numpy.random.seed(23) cormo = JB2009CorrelationModel(vs30_clustering=False) corma = cormo._get_correlation_matrix(self.sites, self.imt1) gmfs = ground_motion_fields( self.rupture, self.sites, [self.imt1], self.gsim, truncation_level=None, realizations=6000, correlation_model=cormo ) sampled_corma = numpy.corrcoef(gmfs[self.imt1]) assert_allclose(corma, sampled_corma, rtol=0, atol=0.02)
def test_filtered_no_truncation(self): numpy.random.seed(17) realizations = 50 self.gsim.expect_same_sitecol = False gmfs = ground_motion_fields( self.rupture, self.sites, [self.imt1, self.imt2], self.gsim, truncation_level=None, realizations=realizations, rupture_site_filter=self.rupture_site_filter ) for imt in [self.imt1, self.imt2]: intensity = gmfs[imt] self.assertEqual(intensity.shape, (7, realizations)) assert_array_equal( intensity[(1 - self.sites.vs30measured).nonzero()], 0 ) self.assertFalse( (intensity[self.sites.vs30measured.nonzero()] == 0).any() )
def test_array_instead_of_matrix(self): mean = 10 inter = 1e-300 intra = 1 points = [Point(0, 0), Point(0, 0.23)] sites = [Site(point, mean, False, inter, intra) for point in points] self.sites = SiteCollection(sites) numpy.random.seed(43) cormo = JB2009CorrelationModel(vs30_clustering=False) corma = cormo.get_correlation_matrix(self.sites, self.imt1) lt_corma = cormo.get_lower_triangle_correlation_matrix(self.sites, self.imt1) gmfs = ground_motion_fields( self.rupture, self.sites, [self.imt1], self.gsim, truncation_level=None, realizations=6000, lt_correlation_matrices={self.imt1: lt_corma.A} ) sampled_corma = numpy.corrcoef(gmfs[self.imt1]) assert_allclose(corma, sampled_corma, rtol=0, atol=0.02)
def ses_and_gmfs(job_id, src_ids, lt_rlz_id, task_seed): """ Celery task for the stochastic event set calculator. Samples logic trees and calls the stochastic event set calculator. Once stochastic event sets are calculated, results will be saved to the database. See :class:`openquake.db.models.SESCollection`. Optionally (specified in the job configuration using the `ground_motion_fields` parameter), GMFs can be computed from each rupture in each stochastic event set. GMFs are also saved to the database. Once all of this work is complete, a signal will be sent via AMQP to let the control noe know that the work is complete. (If there is any work left to be dispatched, this signal will indicate to the control node that more work can be enqueued.) :param int job_id: ID of the currently running job. :param src_ids: List of ids of parsed source models from which we will generate stochastic event sets/ruptures. :param lt_rlz_id: Id of logic tree realization model to calculate for. :param int task_seed: Value for seeding numpy/scipy in the computation of stochastic event sets and ground motion fields. """ logs.LOG.debug( ("> starting `stochastic_event_sets` task: job_id=%s, " "lt_realization_id=%s") % (job_id, lt_rlz_id) ) numpy.random.seed(task_seed) hc = models.HazardCalculation.objects.get(oqjob=job_id) cmplt_lt_ses = None if hc.complete_logic_tree_ses: cmplt_lt_ses = models.SES.objects.get(ses_collection__output__oq_job=job_id, complete_logic_tree_ses=True) cmplt_lt_gmf = None if hc.complete_logic_tree_gmf: cmplt_lt_gmf = models.GmfSet.objects.get(gmf_collection__output__oq_job=job_id, complete_logic_tree_gmf=True) if hc.ground_motion_fields: # For ground motion field calculation, we need the points of interest # for the calculation. points_to_compute = hc.points_to_compute() lt_rlz = models.LtRealization.objects.get(id=lt_rlz_id) ltp = logictree.LogicTreeProcessor(hc.id) apply_uncertainties = ltp.parse_source_model_logictree_path(lt_rlz.sm_lt_path) gsims = ltp.parse_gmpe_logictree_path(lt_rlz.gsim_lt_path) sources = list( haz_general.gen_sources( src_ids, apply_uncertainties, hc.rupture_mesh_spacing, hc.width_of_mfd_bin, hc.area_source_discretization ) ) logs.LOG.debug("> creating site collection") site_coll = haz_general.get_site_collection(hc) logs.LOG.debug("< done creating site collection") if hc.ground_motion_fields: imts = [haz_general.imt_to_nhlib(x) for x in hc.intensity_measure_types] correl_model = None if hc.ground_motion_correlation_model is not None: correl_model = _get_correl_model(hc) # Compute stochastic event sets # For each rupture generated, we can optionally calculate a GMF for ses_rlz_n in xrange(1, hc.ses_per_logic_tree_path + 1): logs.LOG.debug("> computing stochastic event set %s of %s" % (ses_rlz_n, hc.ses_per_logic_tree_path)) # This is the container for all ruptures for this stochastic event set # (specified by `ordinal` and the logic tree realization). # NOTE: Many tasks can contribute ruptures to this SES. ses = models.SES.objects.get(ses_collection__lt_realization=lt_rlz, ordinal=ses_rlz_n) sources_sites = ((src, site_coll) for src in sources) ssd_filter = filters.source_site_distance_filter(hc.maximum_distance) # Get the filtered sources, ignore the site collection: filtered_sources = (src for src, _ in ssd_filter(sources_sites)) # Calculate stochastic event sets: logs.LOG.debug("> computing stochastic event sets") if hc.ground_motion_fields: logs.LOG.debug("> computing also ground motion fields") # This will be the "container" for all computed ground motion field # results for this stochastic event set. gmf_set = models.GmfSet.objects.get(gmf_collection__lt_realization=lt_rlz, ses_ordinal=ses_rlz_n) ses_poissonian = stochastic.stochastic_event_set_poissonian(filtered_sources, hc.investigation_time) logs.LOG.debug("> looping over ruptures") rupture_ctr = 0 for rupture in ses_poissonian: # Prepare and save SES ruptures to the db: logs.LOG.debug("> saving SES rupture to DB") _save_ses_rupture(ses, rupture, cmplt_lt_ses) logs.LOG.debug("> done saving SES rupture to DB") # Compute ground motion fields (if requested) logs.LOG.debug("compute ground motion fields? %s" % hc.ground_motion_fields) if hc.ground_motion_fields: # Compute and save ground motion fields gmf_calc_kwargs = { "rupture": rupture, "sites": site_coll, "imts": imts, "gsim": gsims[rupture.tectonic_region_type], "truncation_level": hc.truncation_level, "realizations": DEFAULT_GMF_REALIZATIONS, "correlation_model": correl_model, "rupture_site_filter": filters.rupture_site_distance_filter(hc.maximum_distance), } logs.LOG.debug("> computing ground motion fields") gmf_dict = gmf_calc.ground_motion_fields(**gmf_calc_kwargs) logs.LOG.debug("< done computing ground motion fields") logs.LOG.debug("> saving GMF results to DB") _save_gmf_nodes(gmf_set, gmf_dict, points_to_compute, cmplt_lt_gmf) logs.LOG.debug("< done saving GMF results to DB") rupture_ctr += 1 logs.LOG.debug("< Done looping over ruptures") logs.LOG.debug( "%s ruptures computed for SES realization %s of %s" % (rupture_ctr, ses_rlz_n, hc.ses_per_logic_tree_path) ) logs.LOG.debug("< done computing stochastic event set %s of %s" % (ses_rlz_n, hc.ses_per_logic_tree_path)) logs.LOG.debug("< task complete, signalling completion") haz_general.signal_task_complete(job_id, len(src_ids))