コード例 #1
0
def test_conform():
    anat = nib.load(pjoin(DATA_DIR, 'anatomical.nii'))

    # Test with default arguments.
    c = conform(anat)
    assert c.shape == (256, 256, 256)
    assert c.header.get_zooms() == (1, 1, 1)
    assert c.dataobj.dtype.type == anat.dataobj.dtype.type
    assert aff2axcodes(c.affine) == ('R', 'A', 'S')
    assert isinstance(c, Nifti1Image)

    # Test with non-default arguments.
    c = conform(anat, out_shape=(100, 100, 200), voxel_size=(2, 2, 1.5),
        orientation="LPI", out_class=Nifti2Image)
    assert c.shape == (100, 100, 200)
    assert c.header.get_zooms() == (2, 2, 1.5)
    assert c.dataobj.dtype.type == anat.dataobj.dtype.type
    assert aff2axcodes(c.affine) == ('L', 'P', 'I')
    assert isinstance(c, Nifti2Image)

    # TODO: support nD images in `conform` in the future, but for now, test that we get
    # errors on non-3D images.
    func = nib.load(pjoin(DATA_DIR, 'functional.nii'))
    with pytest.raises(ValueError):
        conform(func)
    with pytest.raises(ValueError):
        conform(anat, out_shape=(100, 100))
    with pytest.raises(ValueError):
        conform(anat, voxel_size=(2, 2))
コード例 #2
0
def main(args=None):
    """Main program function."""
    parser = _get_parser()
    opts = parser.parse_args(args)
    from_img = load(opts.infile)

    if not opts.force and Path(opts.outfile).exists():
        raise FileExistsError(f"Output file exists: {opts.outfile}")

    out_img = conform(from_img=from_img,
                      out_shape=opts.out_shape,
                      voxel_size=opts.voxel_size,
                      order=3,
                      cval=0.0,
                      orientation=opts.orientation)

    save(out_img, opts.outfile)
コード例 #3
0
def loadrespadsave( in_path,xy_width,ressize,orient='LPS',mask=0,rescalemethod='minmax',out_path=None ):

	### Import modules
	import nibabel as _nib
	import nibabel.processing as _nibp
	from scipy.ndimage.interpolation import zoom as _zoom
	
	### Load image
	FileRead = _nib.load( in_path )
    
	### Re-orient, resample and resize the image
	#IF
	if mask:
		spline_order = 0	#NN
	else:
		spline_order = 1	#Linear
	#ENDIF

	FileRead_res = _nibp.conform( FileRead, \
					out_shape=(xy_width,xy_width,xy_width), \
					voxel_size=(ressize,ressize,ressize), \
					orientation=orient, \
					order=spline_order )

	# IF
	if len( FileRead_res.get_data().shape ) > 3:
		FileDat = FileRead_res.get_data()[ :,:,:,0 ]
	else:
		FileDat = FileRead_res.get_data()
	# ENDIF

    	### Rescale image
	if mask == 0:
		FileDat = rescaleimages.rescaleImage( FileDat, minInt=0, maxInt=1, perc=99.9, method=rescalemethod )
    		
	# IF
	# Save as numpy file
	if out_path:
		_np.save( out_path, FileDat )
	# Return numpy array
	else:
		return FileDat, FileRead_res
コード例 #4
0
    def get_mask(self, weights_path=None, post_process=True, inplace=False):
        """
        Estimate a mask from the provided input data.

        Parameters
        ----------
        weights_path : str, optional
            Path to custom neural network weights. Defaults ot segment home
            and will download latest weights if nothing is specified.
        post_process : bool, optional
            Default True
            Keep only the two largest connected volumes in the mask. Note
            this may cause issue with subjects that have more or less than
            two kidneys.
        inplace : bool, optional
            Default False
            If true, no numpy array of the mask will be returned, instead
            only the mask attributes in the class will be updated. Can be
            useful if only kidney volumes are desired rather than the voxel
            by voxel masks.

        Returns
        -------
        mask : np.ndarray, optional
            The estimated probability that each voxel is renal tissue
        """
        if weights_path is None:
            weights_path = fetch.Weights().path
        img = conform(self._img, out_shape=(240, 240, self.shape[-1]),
                      voxel_size=(1.458, 1.458, self.zoom[-1] * 0.998),
                      orientation='LIP')
        data = img.get_fdata()
        data = np.flip(data, 1)
        data = np.swapaxes(data, 0, 2)
        data = np.swapaxes(data, 1, 2)
        data = self._rescale(data)
        data = resize(data, (data.shape[0], 256, 256))
        data = data.reshape((data.shape[0], data.shape[1], data.shape[2], 1))
        model = load_model(weights_path,
                           custom_objects={'dice_coef_loss':
                                           self._dice_coef_loss,
                                           'dice_coef': self._dice_coef})
        batch_size = 2 ** 3
        mask = model.predict(data, batch_size=batch_size)
        mask = np.squeeze(mask)
        mask = np.swapaxes(mask, 0, 2)
        mask = np.swapaxes(mask, 0, 1)
        mask = np.flip(mask, 1)
        mask = resize(mask, (240, 240, self.shape[-1]))
        if post_process:
            cleaned_mask = self._cleanup(mask > 0.05)
            mask[cleaned_mask < 0.5] = 0.0
        mask_img = nib.Nifti1Image(mask, img.affine)
        self._mask_img = conform(mask_img,
                                 out_shape=self.shape,
                                 voxel_size=self.zoom,
                                 orientation=self.orientation)
        self.mask = self._rescale(self._mask_img.get_fdata(), 0, 1)
        self._mask_img = nib.Nifti1Image(self.mask, self._mask_img.affine)
        self.tkv = (np.sum(self.mask > 0.5) *
                    np.prod(self.zoom))/1000
        self.lkv = (np.sum(self.mask[120:] > 0.5) *
                    np.prod(self.zoom))/1000
        self.rkv = (np.sum(self.mask[:120] > 0.5) *
                    np.prod(self.zoom)) / 1000

        if not inplace:
            return self.mask
コード例 #5
0
        'Reorient to LIA and resample to 1mm iso-voxel resolution if required')

    parser.add_argument('source', type=str, help='Input volume')

    parser.add_argument('destination', type=str, help='Normalized volume')

    args = parser.parse_args()

    src_nib = nib_funcs.squeeze_image(nib.load(args.source))
    current_orientation = ''.join(nib.aff2axcodes(src_nib.affine))
    print('Input: {} [{}]'.format(src_nib.header.get_zooms(),
                                  current_orientation))

    # Avoid resampling if already 1mm iso-voxel
    # Note: Also in cases of tiny rounding error, e.g. (1.0000001, 1.0000001, 1.0)
    if not np.allclose(src_nib.header.get_zooms(), [1, 1, 1]):
        # requires re-sampling
        print('Resampling')
        dst_nib = nib_processing.conform(src_nib, orientation='LIA')
    elif current_orientation != 'LIA':
        # requires just reorient
        print('Reorientating {} to LIA'.format(current_orientation))
        start_ornt = nib_orientations.io_orientation(src_nib.affine)
        end_ornt = nib_orientations.axcodes2ornt('LIA')
        transform = nib_orientations.ornt_transform(start_ornt, end_ornt)
        dst_nib = src_nib.as_reoriented(transform)
    else:
        dst_nib = src_nib

    nib.save(dst_nib, args.destination)
コード例 #6
0
    # Load the model
    model = _get_model(model_path)

    # Load the input file
    _orig_infile = nib.load(data)
    img = _orig_infile
    ndim = len(img.shape)
    if ndim != 3:
        raise ValueError(
            "Input volume must have three dimensions but got {}.".format(ndim))

    # check data dimension and conform
    if img.shape != required_shape:
        print("++ Conforming volume to 1mm^3 voxels and size 256x256x256.")
        img = conform(_orig_infile, out_shape=required_shape)

    inputs = np.asarray(img.dataobj)
    img.uncache()
    inputs = inputs.astype(np.float32)

    # forward pass of the model
    outputs = predict_from_array(inputs,
                                 model,
                                 block_shape,
                                 batch_size=1,
                                 normalizer=standardize_numpy,
                                 n_samples=n_samples,
                                 return_variance=True,
                                 return_entropy=True)