WELL_KNOWN_IDS = Recoder((('9861', 'H0351.2001', '178238387', '157722636'), ('10021', 'H0351.2002', '178238373', '157723301'), ('12876', 'H0351.1009', '178238359', '157722290'), ('15496', 'H0351.1015', '178238266', '162021642'), ('14380', 'H0351.1012', '178238316', '157721937'), ('15697', 'H0351.1016', '178236545', '157682966')), fields=( 'subj', 'uid', 'url', 't1w', )) VALID_DONORS = sorted( WELL_KNOWN_IDS.value_set('subj') | WELL_KNOWN_IDS.value_set('uid')) def _get_dataset_dir(dataset_name, data_dir=None, verbose=1): """ Gets path to `dataset_name` Parameters ---------- dataset_name : str The name of the dataset in question data_dir : str, optional Path to use as data directory. If not specified, will check for environmental variables 'ABAGEN_DATA'; if that is not set, will use '~/abagen-data' instead. Default: None verbose : int, optional
from nilearn.datasets.utils import _fetch_files, _get_dataset_dir import pandas as pd from sklearn.utils import Bunch from abagen import io WELL_KNOWN_IDS = Recoder( (('9861', 'H0351.2001', '178238387', '157722636'), ('10021', 'H0351.2002', '178238373', '157723301'), ('12876', 'H0351.1009', '178238359', '157722290'), ('15496', 'H0351.1015', '178238266', '162021642'), ('14380', 'H0351.1012', '178238316', '157721937'), ('15697', 'H0351.1016', '178236545', '157682966')), fields=('subj', 'uid', 'url', 't1w',) ) VALID_DONORS = sorted(WELL_KNOWN_IDS.value_set('subj') | WELL_KNOWN_IDS.value_set('uid')) def fetch_microarray(data_dir=None, donors=['9861'], resume=True, verbose=1, convert=True): """ Downloads the Allen Human Brain Atlas microarray expression dataset Parameters ---------- data_dir : str, optional Directory where data should be downloaded and unpacked. Default: current directory donors : list, optional List of donors to download; can be either donor number or UID. Can also