def __init__(self, net_param, action_param, is_training): SegmentationApplication.__init__(self, net_param, action_param, is_training) tf.logging.info('starting decay learning segmentation application') self.learning_rate = None self.momentum = None max_lr = action_param.lr self.max = action_param.max_iter pct = 1 / max_lr if max_lr > 3 else 0.3 a = int(self.max * pct) b = self.max - a phases = (a, b) div_factor = 20 final_div = div_factor * 1e3 low_lr = max_lr / div_factor min_lr = max_lr / final_div lr_cfg = ((low_lr, max_lr), (max_lr, min_lr)) moms = (action_param.mom, action_param.mom_end) mom_cfg = (moms, (moms[1], moms[0])) self.lr_prop = steps({'steps_cfg': lr_cfg, 'phases': phases}) self.mom_prop = steps({'steps_cfg': mom_cfg, 'phases': phases}) self.current_lr = self.lr_prop[0].start self.mom = self.mom_prop[0].start self.res = {}
def __init__(self, net_param, action_param, is_training): SegmentationApplication.__init__(self, net_param, action_param, is_training) tf.logging.info('starting decay learning segmentation application') self.learning_rate = None self.current_lr = action_param.lr if self.action_param.validation_every_n > 0: raise NotImplementedError("validation process is not implemented " "in this demo.")
def __init__(self, net_param, action_param, is_training): SegmentationApplication.__init__( self, net_param, action_param, is_training) tf.logging.info('starting decay learning segmentation application') self.learning_rate = None self.current_lr = action_param.lr if self.action_param.validation_every_n > 0: raise NotImplementedError("validation process is not implemented " "in this demo.")
def __init__(self, net_param, action_param, is_training): SegmentationApplication.__init__(self, net_param, action_param, is_training) tf.logging.info('starting decay learning segmentation application') self.learning_rate = None self.current_lr = action_param.lr self.init_lr = action_param.lr self.prec_loss = 10.0 self.curent_loss = None self.count = 0 self.tx = 0.2 self.cpt = 0 self.theta = float(action_param.max_iter) self.beta = float(self.theta * 3) self.avg = 0
def __init__(self, net_param, action_param, is_training): SegmentationApplication.__init__(self, net_param, action_param, is_training) tf.logging.info('starting decay learning segmentation application') self.learning_rate = None max_lr = action_param.lr self.max = action_param.max_iter pct = 1 / max_lr if max_lr > 3 else 0.3 a = int(self.max * pct) b = self.max - a phases = (a, b) div_factor = 20 final_div = div_factor * 1e3 low_lr = max_lr / div_factor min_lr = max_lr / final_div step_cfg = ((low_lr, max_lr), (max_lr, min_lr)) self.lr_prop = steps({'steps_cfg': step_cfg, 'phases': phases}) self.current_lr = self.lr_prop[0].start self.res = {} print("\n\nThe maximum learning rate should be greater than 1e-3\n\n")
def __init__(self, net_param, action_param, is_training): SegmentationApplication.__init__(self, net_param, action_param, is_training) tf.logging.info('starting segmentation application')
def __init__(self, net_param, action_param, is_training): SegmentationApplication.__init__( self, net_param, action_param, is_training) tf.logging.info('starting decay learning segmentation application') self.learning_rate = None