コード例 #1
0
ファイル: test_utils.py プロジェクト: zhiye9/nilearn
def test_z_score():
    p = np.random.rand(10)
    assert_array_almost_equal(norm.sf(z_score(p)), p)
    # check the numerical precision
    for p in [1.e-250, 1 - 1.e-16]:
        assert_array_almost_equal(z_score(p), norm.isf(p))
    assert_array_almost_equal(z_score(np.float32(1.e-100)), norm.isf(1.e-300))
コード例 #2
0
ファイル: contrasts.py プロジェクト: yogeshmj/nilearn
    def z_score(self, baseline=0.0):
        """Return a parametric estimation of the z-score associated
        with the null hypothesis: (H0) 'contrast equals baseline'

        Parameters
        ----------
        baseline : float, optional,
            Baseline value for the test statistic.
            Default=0.0.

        Returns
        -------
        z_score : 1-d array, shape=(n_voxels,)
            statistical values, one per voxel

        """
        if self.p_value_ is None or not self.baseline == baseline:
            self.p_value_ = self.p_value(baseline)
        if self.one_minus_pvalue_ is None:
            self.one_minus_pvalue_ = self.one_minus_pvalue(baseline)

        # Avoid inf values kindly supplied by scipy.
        self.z_score_ = z_score(self.p_value_,
                                one_minus_pvalue=self.one_minus_pvalue_)
        return self.z_score_
コード例 #3
0
def test_z_score():
    # ################# Check z-scores computed from t-values #################
    # Randomly draw samples from the standard Student’s t distribution
    tval = np.random.RandomState(42).standard_t(10, size=10)
    # Estimate the p-values using the Survival Function (SF)
    pval = sps.t.sf(tval, 1e10)
    # Estimate the p-values using the Cumulative Distribution Function (CDF)
    cdfval = sps.t.cdf(tval, 1e10)
    # Set a minimum threshold for p-values to avoid infinite z-scores
    pval = np.array(np.minimum(np.maximum(pval, 1.e-300), 1. - 1.e-16))
    cdfval = np.array(np.minimum(np.maximum(cdfval, 1.e-300), 1. - 1.e-16))
    # Compute z-score from the p-value estimated with the SF
    zval_sf = norm.isf(pval)
    # Compute z-score from the p-value estimated with the CDF
    zval_cdf = norm.ppf(cdfval)
    # Create the final array of z-scores, ...
    zval = np.zeros(pval.size)
    # ... in which z-scores < 0 estimated w/ SF are replaced by z-scores < 0
    # estimated w/ CDF
    zval[np.atleast_1d(zval_sf < 0)] = zval_cdf[zval_sf < 0]
    # ... and z-scores >=0 estimated from SF are kept.
    zval[np.atleast_1d(zval_sf >= 0)] = zval_sf[zval_sf >= 0]
    # Test 'z_score' function in 'nilearn/glm/contrasts.py'
    assert_array_almost_equal(z_score(pval, one_minus_pvalue=cdfval), zval)
    # Test 'z_score' function in 'nilearn/glm/contrasts.py',
    # when one_minus_pvalue is None
    assert_array_almost_equal(norm.sf(z_score(pval)), pval)
    # ################# Check z-scores computed from F-values #################
    # Randomly draw samples from the F distribution
    fval = np.random.RandomState(42).f(1, 48, size=10)
    # Estimate the p-values using the Survival Function (SF)
    p_val = sps.f.sf(fval, 42, 1e10)
    # Estimate the p-values using the Cumulative Distribution Function (CDF)
    cdf_val = sps.f.cdf(fval, 42, 1e10)
    # Set a minimum threshold for p-values to avoid infinite z-scores
    p_val = np.array(np.minimum(np.maximum(p_val, 1.e-300), 1. - 1.e-16))
    cdf_val = np.array(np.minimum(np.maximum(cdf_val, 1.e-300), 1. - 1.e-16))
    # Compute z-score from the p-value estimated with the SF
    z_val_sf = norm.isf(p_val)
    # Compute z-score from the p-value estimated with the CDF
    z_val_cdf = norm.ppf(cdf_val)
    # Create the final array of z-scores, ...
    z_val = np.zeros(p_val.size)
    # ... in which z-scores < 0 estimated w/ SF are replaced by z-scores < 0
    # estimated w/ CDF
    z_val[np.atleast_1d(z_val_sf < 0)] = z_val_cdf[z_val_sf < 0]
    # ... and z-scores >=0 estimated from SF are kept.
    z_val[np.atleast_1d(z_val_sf >= 0)] = z_val_sf[z_val_sf >= 0]
    # Test 'z_score' function in 'nilearn/glm/contrasts.py'
    assert_array_almost_equal(z_score(p_val, one_minus_pvalue=cdf_val), z_val)
    # Test 'z_score' function in 'nilearn/glm/contrasts.py',
    # when one_minus_pvalue is None
    assert_array_almost_equal(norm.sf(z_score(p_val)), p_val)
    # ##################### Check the numerical precision #####################
    for t in [33.75, -8.3]:
        p = sps.t.sf(t, 1e10)
        cdf = sps.t.cdf(t, 1e10)
        z_sf = norm.isf(p)
        z_cdf = norm.ppf(cdf)
        if p <= .5:
            z = z_sf
        else:
            z = z_cdf
        assert_array_almost_equal(z_score(p, one_minus_pvalue=cdf), z)