コード例 #1
0
ファイル: test_neurovault.py プロジェクト: rob-luke/nilearn
def test_should_download_original_images_along_resampled_images_if_previously_downloaded(
        tmp_path):
    collections, images = _get_neurovault_data()

    sample_collection = collections.iloc[0]
    sample_collection_id = sample_collection["id"]

    # Fetch non-resampled images
    data = neurovault.fetch_neurovault_ids(
        collection_ids=[sample_collection_id],
        data_dir=tmp_path,
        resample=True,
    )

    # Check that only the resampled version is here
    assert np.all([
        os.path.isfile(im_meta['resampled_absolute_path'])
        for im_meta in data['images_meta']
    ])
    assert not np.any([
        os.path.isfile(im_meta['absolute_path'])
        for im_meta in data['images_meta']
    ])

    # Get the time of the last access to the resampled data
    access_time_resampled = (os.path.getatime(
        data['images_meta'][0]['resampled_absolute_path']))

    # Download original data
    data_orig = neurovault.fetch_neurovault_ids(
        collection_ids=[sample_collection_id],
        data_dir=tmp_path,
        resample=False,
    )

    # Get the time of the last access to one of the original files (which should be download time)
    access_time = (os.path.getatime(
        data_orig['images_meta'][0]['absolute_path']))

    # Check that the last access to the original data is after the access to the resampled data
    assert (access_time - access_time_resampled > 0)

    # Check that the original version is now here (previous test should have failed anyway if not)
    assert np.all([
        os.path.isfile(im_meta['absolute_path'])
        for im_meta in data_orig['images_meta']
    ])

    # Check that the affines of the original version do not correspond to the resampled one
    affines_orig = [load_img(cur_im).affine for cur_im in data_orig['images']]
    assert not np.any(
        [np.all(affine == neurovault.STD_AFFINE) for affine in affines_orig])
コード例 #2
0
ファイル: test_neurovault.py プロジェクト: yogeshmj/nilearn
def test_should_download_resampled_images_only_if_no_previous_download(
        tmp_path):
    collections, images = _get_neurovault_data()

    sample_collection = collections.iloc[0]
    sample_collection_id = sample_collection["id"]
    expected_number_of_images = sample_collection["true_number_of_images"]

    data = neurovault.fetch_neurovault_ids(
        collection_ids=[sample_collection_id],
        data_dir=str(tmp_path),
        resample=True,
    )

    # Check the expected size of the dataset
    assert (len(data['images_meta'])) == expected_number_of_images

    # Check that the resampled version is here
    assert np.all([
        os.path.isfile(im_meta['resampled_absolute_path'])
        for im_meta in data['images_meta']
    ])

    # Load images that are fetched and check the affines
    affines = [load_img(cur_im).affine for cur_im in data['images']]
    assert np.all(
        [np.all(affine == neurovault.STD_AFFINE) for affine in affines])

    # Check that the original version is NOT here
    assert not np.any([
        os.path.isfile(im_meta['absolute_path'])
        for im_meta in data['images_meta']
    ])
コード例 #3
0
def test_fetch_neurovault_ids(tmp_path):
    data_dir = str(tmp_path)
    collections, images = _get_neurovault_data()
    collections = collections.sort_values(by="true_number_of_images",
                                          ascending=False)
    other_col_id, *col_ids = collections["id"].values[:3]
    img_ids = images[images["collection_id"] == other_col_id]["id"].values[:3]
    img_from_cols_ids = images[images["collection_id"].isin(
        col_ids)]["id"].values
    pytest.raises(ValueError, neurovault.fetch_neurovault_ids, mode='bad')
    data = neurovault.fetch_neurovault_ids(image_ids=img_ids,
                                           collection_ids=col_ids,
                                           data_dir=data_dir)
    expected_images = list(img_ids) + list(img_from_cols_ids)
    assert len(data.images) == len(expected_images)
    assert {img['id'] for img in data['images_meta']} == set(expected_images)
    assert os.path.dirname(
        data['images'][0]) == data['collections_meta'][0]['absolute_path']
    # check image can be loaded again from disk
    data = neurovault.fetch_neurovault_ids(image_ids=[img_ids[0]],
                                           data_dir=data_dir,
                                           mode='offline')
    assert len(data.images) == 1
    # check that download_new mode forces overwrite
    modified_meta = data['images_meta'][0]
    assert modified_meta['some_key'] == 'some_value'
    modified_meta['some_key'] = 'some_other_value'
    # mess it up on disk
    meta_path = os.path.join(os.path.dirname(modified_meta['absolute_path']),
                             'image_{}_metadata.json'.format(img_ids[0]))
    with open(meta_path, 'wb') as meta_f:
        meta_f.write(json.dumps(modified_meta).encode('UTF-8'))
    # fresh download
    data = neurovault.fetch_neurovault_ids(image_ids=[img_ids[0]],
                                           data_dir=data_dir,
                                           mode='download_new')
    data = neurovault.fetch_neurovault_ids(image_ids=[img_ids[0]],
                                           data_dir=data_dir,
                                           mode='offline')
    # should not have changed
    assert data['images_meta'][0]['some_key'] == 'some_other_value'
    data = neurovault.fetch_neurovault_ids(image_ids=[img_ids[0]],
                                           data_dir=data_dir,
                                           mode='overwrite')
    data = neurovault.fetch_neurovault_ids(image_ids=[img_ids[0]],
                                           data_dir=data_dir,
                                           mode='offline')
    # should be back to the original version
    assert data['images_meta'][0]['some_key'] == 'some_value'
コード例 #4
0
ファイル: test_neurovault.py プロジェクト: saby9996/nilearn
def test_fetch_neurovault_ids():
    # test using explicit id list instead of filters, and downloading
    # an image which has no collection dir or metadata yet.
    with _TestTemporaryDirectory() as data_dir:
        assert_raises(ValueError, neurovault.fetch_neurovault_ids, mode='bad')
        data = neurovault.fetch_neurovault_ids(image_ids=[111],
                                               collection_ids=[307],
                                               data_dir=data_dir)
        if len(data.images) == 2:
            assert_equal([img['id'] for img in data['images_meta']],
                         [1750, 111])
            assert_equal(os.path.dirname(data['images'][0]),
                         data['collections_meta'][0]['absolute_path'])
            # check image can be loaded again from disk
            data = neurovault.fetch_neurovault_ids(image_ids=[111],
                                                   data_dir=data_dir,
                                                   mode='offline')
            assert_equal(len(data.images), 1)
            # check that download_new mode forces overwrite
            modified_meta = data['images_meta'][0]
            assert_equal(modified_meta['figure'], '3A')
            modified_meta['figure'] = '3B'
            # mess it up on disk
            meta_path = os.path.join(
                os.path.dirname(modified_meta['absolute_path']),
                'image_111_metadata.json')
            with open(meta_path, 'wb') as meta_f:
                meta_f.write(json.dumps(modified_meta).encode('UTF-8'))
            # fresh download
            data = neurovault.fetch_neurovault_ids(image_ids=[111],
                                                   data_dir=data_dir,
                                                   mode='download_new')
            data = neurovault.fetch_neurovault_ids(image_ids=[111],
                                                   data_dir=data_dir,
                                                   mode='offline')
            # should not have changed
            assert_equal(data['images_meta'][0]['figure'], '3B')
            data = neurovault.fetch_neurovault_ids(image_ids=[111],
                                                   data_dir=data_dir,
                                                   mode='overwrite')
            data = neurovault.fetch_neurovault_ids(image_ids=[111],
                                                   data_dir=data_dir,
                                                   mode='offline')
            # should be back to the original version
            assert_equal(data['images_meta'][0]['figure'], '3A')
コード例 #5
0
ファイル: test_neurovault.py プロジェクト: TheChymera/nilearn
def test_fetch_neurovault_ids():
    # test using explicit id list instead of filters, and downloading
    # an image which has no collection dir or metadata yet.
    with _TestTemporaryDirectory() as data_dir:
        assert_raises(ValueError, neurovault.fetch_neurovault_ids, mode='bad')
        data = neurovault.fetch_neurovault_ids(
            image_ids=[111], collection_ids=[307], data_dir=data_dir)
        if len(data.images) == 2:
            assert_equal([img['id'] for img in data['images_meta']],
                         [1750, 111])
            assert_equal(os.path.dirname(data['images'][0]),
                         data['collections_meta'][0]['absolute_path'])
            # check image can be loaded again from disk
            data = neurovault.fetch_neurovault_ids(
                image_ids=[111], data_dir=data_dir, mode='offline')
            assert_equal(len(data.images), 1)
            # check that download_new mode forces overwrite
            modified_meta = data['images_meta'][0]
            assert_equal(modified_meta['figure'], '3A')
            modified_meta['figure'] = '3B'
            # mess it up on disk
            meta_path = os.path.join(
                os.path.dirname(modified_meta['absolute_path']),
                'image_111_metadata.json')
            with open(meta_path, 'wb') as meta_f:
                meta_f.write(json.dumps(modified_meta).encode('UTF-8'))
            # fresh download
            data = neurovault.fetch_neurovault_ids(
                image_ids=[111], data_dir=data_dir, mode='download_new')
            data = neurovault.fetch_neurovault_ids(
                image_ids=[111], data_dir=data_dir, mode='offline')
            # should not have changed
            assert_equal(data['images_meta'][0]['figure'], '3B')
            data = neurovault.fetch_neurovault_ids(
                image_ids=[111], data_dir=data_dir, mode='overwrite')
            data = neurovault.fetch_neurovault_ids(
                image_ids=[111], data_dir=data_dir, mode='offline')
            # should be back to the original version
            assert_equal(data['images_meta'][0]['figure'], '3A')
コード例 #6
0
ファイル: test_neurovault.py プロジェクト: yogeshmj/nilearn
def test_should_download_resampled_images_along_original_images_if_previously_downloaded(
        tmp_path):
    collections, images = _get_neurovault_data()

    sample_collection = collections.iloc[0]
    sample_collection_id = sample_collection["id"]

    # Fetch non-resampled images
    data_orig = neurovault.fetch_neurovault_ids(
        collection_ids=[sample_collection_id],
        data_dir=str(tmp_path),
        resample=False)

    # Check that the original version is here
    assert np.all([
        os.path.isfile(im_meta['absolute_path'])
        for im_meta in data_orig['images_meta']
    ])

    # Check that the resampled version is NOT here
    assert not np.any([
        os.path.isfile(im_meta['resampled_absolute_path'])
        for im_meta in data_orig['images_meta']
    ])

    # Asks for the resampled version. This should only resample, not download.

    # Get the time of the last modification to the original data
    modif_time_original = (os.path.getmtime(
        data_orig['images_meta'][0]['absolute_path']))

    # Ask for resampled data, which should only trigger resample
    data = neurovault.fetch_neurovault_ids(
        collection_ids=[sample_collection_id],
        data_dir=str(tmp_path),
        resample=True)

    # Get the time of the last modification to the original data, after fetch
    modif_time_original_after = (os.path.getmtime(
        data['images_meta'][0]['absolute_path']))

    # The time difference should be 0
    assert (np.isclose(modif_time_original, modif_time_original_after))

    # Check that the resampled version is here
    assert np.all([
        os.path.isfile(im_meta['resampled_absolute_path'])
        for im_meta in data['images_meta']
    ])

    # And the original version should still be here as well
    assert np.all([
        os.path.isfile(im_meta['absolute_path'])
        for im_meta in data['images_meta']
    ])

    # Load resampled images and check the affines
    affines = [load_img(cur_im).affine for cur_im in data['images']]
    assert np.all(
        [np.all(affine == neurovault.STD_AFFINE) for affine in affines])

    # Check that the affines of the original version do not correspond to the resampled one
    affines_orig = [load_img(cur_im).affine for cur_im in data_orig['images']]
    assert not np.any(
        [np.all(affine == neurovault.STD_AFFINE) for affine in affines_orig])