def test_clean_img(): rng = np.random.RandomState(0) data = rng.randn(10, 10, 10, 100) + .5 data_flat = data.T.reshape(100, -1) data_img = nibabel.Nifti1Image(data, np.eye(4)) data_img_ = image.clean_img(data_img, detrend=True, standardize=False, low_pass=0.1) data_flat_ = signal.clean(data_flat, detrend=True, standardize=False, low_pass=0.1) np.testing.assert_almost_equal(data_img_.get_data().T.reshape(100, -1), data_flat_) # if NANs data[:, 9, 9] = np.nan # if infinity data[:, 5, 5] = np.inf nan_img = nibabel.Nifti1Image(data, np.eye(4)) clean_im = image.clean_img(nan_img, ensure_finite=True) assert_true(np.any(np.isfinite(clean_im.get_data())), True) # test_clean_img_passing_nifti2image data_img_nifti2 = nibabel.Nifti2Image(data, np.eye(4)) data_img_nifti2_ = image.clean_img(data_img_nifti2, detrend=True, standardize=False, low_pass=0.1)
def test_clean_img(): rng = np.random.RandomState(0) data = rng.randn(10, 10, 10, 100) + .5 data_flat = data.T.reshape(100, -1) data_img = nibabel.Nifti1Image(data, np.eye(4)) assert_raises( ValueError, image.clean_img, data_img, t_r=None, low_pass=0.1) data_img_ = image.clean_img( data_img, detrend=True, standardize=False, low_pass=0.1, t_r=1.0) data_flat_ = signal.clean( data_flat, detrend=True, standardize=False, low_pass=0.1, t_r=1.0) np.testing.assert_almost_equal(data_img_.get_data().T.reshape(100, -1), data_flat_) # if NANs data[:, 9, 9] = np.nan # if infinity data[:, 5, 5] = np.inf nan_img = nibabel.Nifti1Image(data, np.eye(4)) clean_im = image.clean_img(nan_img, ensure_finite=True) assert_true(np.any(np.isfinite(clean_im.get_data())), True) # test_clean_img_passing_nifti2image data_img_nifti2 = nibabel.Nifti2Image(data, np.eye(4)) data_img_nifti2_ = image.clean_img( data_img_nifti2, detrend=True, standardize=False, low_pass=0.1, t_r=1.0)
def test_clean_img(): rng = np.random.RandomState(0) data = rng.randn(10, 10, 10, 100) + .5 data_flat = data.T.reshape(100, -1) data_img = nibabel.Nifti1Image(data, np.eye(4)) assert_raises(ValueError, image.clean_img, data_img, t_r=None, low_pass=0.1) data_img_ = image.clean_img(data_img, detrend=True, standardize=False, low_pass=0.1, t_r=1.0) data_flat_ = signal.clean(data_flat, detrend=True, standardize=False, low_pass=0.1, t_r=1.0) np.testing.assert_almost_equal(data_img_.get_data().T.reshape(100, -1), data_flat_) # if NANs data[:, 9, 9] = np.nan # if infinity data[:, 5, 5] = np.inf nan_img = nibabel.Nifti1Image(data, np.eye(4)) clean_im = image.clean_img(nan_img, ensure_finite=True) assert_true(np.any(np.isfinite(clean_im.get_data())), True) # test_clean_img_passing_nifti2image data_img_nifti2 = nibabel.Nifti2Image(data, np.eye(4)) data_img_nifti2_ = image.clean_img(data_img_nifti2, detrend=True, standardize=False, low_pass=0.1, t_r=1.0) # if mask_img img, mask_img = data_gen.generate_fake_fmri(shape=(10, 10, 10), length=10) data_img_mask_ = image.clean_img(img, mask_img=mask_img) # Checks that output with full mask and without is equal data_img_ = image.clean_img(img) np.testing.assert_almost_equal(data_img_.get_data(), data_img_mask_.get_data())
def test_clean_img(): rng = np.random.RandomState(0) data = rng.randn(10, 10, 10, 100) + .5 data_flat = data.T.reshape(100, -1) data_img = nibabel.Nifti1Image(data, np.eye(4)) assert_raises( ValueError, image.clean_img, data_img, t_r=None, low_pass=0.1) data_img_ = image.clean_img( data_img, detrend=True, standardize=False, low_pass=0.1, t_r=1.0) data_flat_ = signal.clean( data_flat, detrend=True, standardize=False, low_pass=0.1, t_r=1.0) np.testing.assert_almost_equal(data_img_.get_data().T.reshape(100, -1), data_flat_) # if NANs data[:, 9, 9] = np.nan # if infinity data[:, 5, 5] = np.inf nan_img = nibabel.Nifti1Image(data, np.eye(4)) clean_im = image.clean_img(nan_img, ensure_finite=True) assert_true(np.any(np.isfinite(clean_im.get_data())), True) # test_clean_img_passing_nifti2image data_img_nifti2 = nibabel.Nifti2Image(data, np.eye(4)) data_img_nifti2_ = image.clean_img( data_img_nifti2, detrend=True, standardize=False, low_pass=0.1, t_r=1.0) # if mask_img img, mask_img = data_gen.generate_fake_fmri(shape=(10, 10, 10), length=10) data_img_mask_ = image.clean_img(img, mask_img=mask_img) # Checks that output with full mask and without is equal data_img_ = image.clean_img(img) np.testing.assert_almost_equal(data_img_.get_data(), data_img_mask_.get_data())
def test_clean_img(): rng = np.random.RandomState(0) data = rng.randn(10, 10, 10, 100) + .5 data_flat = data.T.reshape(100, -1) data_img = nibabel.Nifti1Image(data, np.eye(4)) data_img_ = image.clean_img( data_img, detrend=True, standardize=False, low_pass=0.1) data_flat_ = signal.clean( data_flat, detrend=True, standardize=False, low_pass=0.1) np.testing.assert_almost_equal(data_img_.get_data().T.reshape(100, -1), data_flat_)
def test_clean_img(): rng = np.random.RandomState(0) data = rng.randn(10, 10, 10, 100) + .5 data_flat = data.T.reshape(100, -1) data_img = nibabel.Nifti1Image(data, np.eye(4)) data_img_ = image.clean_img(data_img, detrend=True, standardize=False, low_pass=0.1) data_flat_ = signal.clean(data_flat, detrend=True, standardize=False, low_pass=0.1) np.testing.assert_almost_equal(data_img_.get_data().T.reshape(100, -1), data_flat_)